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ABSTRACT
This paper is concerned with the identification of the geometric structure of the boundary for a two-dimensional

(stationary) elliptic equation. The domain identification problem is considered as a variational problem to minimize

a defect functional, which utilizes some additional data on certain (known) parts of the boundary. The Gradient

Projection Method is introduced for this problem and numerical results for two model examples are discussed.

1. INTRODUCTION

Shape optimatization problems are important in de-
termining the domain of corroding materials and the lo-
cation of cracks in electrical conductors, for the optimal
design of aerospace structures and airfoil wings, optimiza-
tion of electromagnets, thermal tomography and for many
other applications (e. g. [1]). In this paper, domain iden-
tification for elliptic equations in two spatial variables is
studied where parts of the boundary have to be determined
by sufficient conditions on other parts. Such problems are
highly nonlinear and they are well known to be ill-posed.
The latter means that small perturbations in the data can
cause large errors in the solutions. For numerical methods,
discretization and truncation errors may also lead to use-
less results.

In the literature, existence and uniqueness of such
problems are studied (s. [2]). Moreover, stability results
in form of logarithmic stability estimates are available
(cf. [3], [4]). Several computational results can be found in
the literature using, e.g., Tikhonov regularisation in con-
nection with the L-curve method to determine the regular-
isation parameter (e. g. [5]).

In this paper we propose a variational method: We
consider the unknown parameter vector as a control to
minimize a defect functional. The Gradient Projection
Method is used to solve the problem iteratively, where the
gradient of the minimizing functional is also determined
numerically. In our iterative procedure the iteration index
plays the role of a regularization parameter [6]. Suitable
stopping criteria, as the Morozov and Nemirowskii stop-

ping rule [7], [8] can be applied to determine the optimal
stopping index.

Our approach differs from the ’method of mappings’
which transforms the variable (unknown) domain to a fixed
region by means of a suitable mapping. The given prob-
lem then turns into a parameter estimation problem to
determine the coefficients of an elliptic problem on a fixed
domain (cf. Banks et al. [9],[10] for parabolic equations).

2. DIRECT PROBLEM

Consider a bounded domain G(q) ⊂ R2 defined by

G(q) = {(x, y) ∈ R2|0 < x < 1 , 0 < y < r(x, q)}

where r(x, q) ∈ C[0, 1] , q ∈ Q characterizes the shape of a
part of the boundary, which depends on the constant pa-
rameterization vector q ∈ Q. Here, Q is a given compact
set in Rn , n ∈ N. It is obvious, that the boundary of G(q)
consists of the following components:

Σ1 = {(x, y)| 0 < x < 1 , y = 0}
Σ2 = {(x, y)| x = 0 , 0 < y < r(0, q)}
Σ3 = {(x, y)| x = 1 , 0 < y < r(1, q)}
Σq = {(x, y)| 0 < x < 1 , y = r(x, q)}

In this geometric setting we consider the following direct
problem (see Fig.??) : Given the parameter vector q ∈ Q,
find a function u, such that

−4u = 0 in G(q) (1)



with the mixed boundary conditions

∂u

∂ν
= g1 on Σ1 (2)

∂u

∂ν
= g2 on Σ2 (3)

∂u

∂ν
= g3 on Σ3 (4)

u = fq on Σq , (5)

where gi ∈ L2(Σi) , i = 1, 2, 3 , fq ∈ L2(Σq) and ν denotes
the outer unit normal to ∂G(q).

If we define the function sets

H1
fq|Σq

(Gq) := {u ∈ H1(Gq)| u|Σq = fq}
H1

0|Σq
(Gq) := {u ∈ H1(Gq)| u|Σq = 0}

a weak formulation of the problem can also be given: Find
a function u ∈ H1

fq|Σq
(Gq), such that:

(∇u,∇v)L2(Gq) = (g, v)L2(Σ) ∀v ∈ H1
0|Σq

(Gq) , (6)

where Σ := Σ1 ∪ Σ2 ∪ Σ3 , g := gi on Σi , i = 1, 2, 3. For
questions concerning the existence and uniqueness of solu-
tions to this direct problem, we refer to [11],[12],[13].

6

-
0 1 x

y

r(0, q)
r(1, q)

∂u
∂ν = g2

∂u
∂ν = g1

∂u
∂ν = g3

u = fq

−4u = 0

Figure 1: Direct problem

3. INVERSE PROBLEM

If the parameter vector q is unknown, and Σq has to
be identified, the inverse problem can be posed as follows
(see Fig. ??): Given additional Dirichlet data u = fε

1 on
Σ1, find a pair (u, q), resp. (u,G(q)), such that u solves
the direct problem (1)-(5). The notation fε

1 reminds to
the fact, that the true data f1 may be perturbed by a ran-
dom error of maximum amount ε. It is known, that such
problems are ill-posed (cf. [14]), so we have to take into
consideration, that small data errors can cause large errors
in the solution.
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Figure 2: Inverse problem

4. NUMERICAL METHOD

One possibility to deal with such boundary identifi-
cation problems is the so called ”method of mappings”
(see [2],[9],[10]). Roughly speaking, the fixed BVP on a
variable domain is transformed into a BVP with variable
coefficients on a fixed reference domain and then this co-
efficient identification problem has to be solved.

Our approach to the problem is a different one, namely
to solve the minimization problem:
Find q̂ ∈ Q, which satisfies

J(q̂) = min
q∈Q

J(q) ,

where the minimized ”defect-functional” J(q) is given by

J(q) = ‖u(q)|Σ1 − fε
1‖2L2(Σ1)

, q ∈ Q

and u(q) solves the direct problem on G(q). As a mini-
mization method we make use of the Gradient Projection
Method for nonlinear optimization problems with linear
constraints as it is described in [16] , [17]. To be more pre-
cise the steps of our method are as follows:

1. Determine an initial guess q(0) ∈ Q\∂Q as a starting
point. Set q(1) := q(0), and set the set H of active
constraints to H := ∅.

2. Compute an approximation to −∇qJ(q)(q(1)). For
this purpose, we use a forward differences of first
order (with a suitable chosen step length), so we
have to solve three direct problems in this step. If
∇qJ(q)(q(1)) = 0, which means that q(1) is a station-
ary point, terminate the computation with the result
q(1).

3. If q(1) is an inner point of Q the current direction is
defined by the unit vector

d :=
−∇qJ(q)(q(1))
‖∇qJ(q)(q(1))‖

and we continue with step 5. If q(1) is on ∂Q, d is set
to be the projection of

−∇qJ(q)(q(1))
‖∇qJ(q)(q(1))‖

onto H, and if d 6= 0 we continue with step 5, else we
continue with step 4.



4. Compute the vector θ(q(1)) by

θ(q(1)) = (ΠΠT )−1Π∇qJ(q)(q(1)) ,

where the columns of Π consist of the normal vectors
of the active constraints in H. If all components of
θ(q(1)) are non-positive, then terminate the compu-
tation with the result q(1), else drop the constraint in
H (and in Π) corresponding to the maximum value
in θ(q(1)). Then return to step. 3

5. Determine λm, which is the largest step to be taken
in direction d without violating any (non-active) con-
straint, compute λ0 as the solution of

λ0 = min
λ∈[0,λm]

J(q(1) + λd)

and set q(1) := q(1) + λ0d. If λ0 = λm then add the
new constraint to H (resp. a new column to Π).

6. If an additional stopping criterion (like a certain
number of iterations or a defined grade of accuracy)
is fulfilled, stop the computation, else return to step
2. (This step is needed, since we cannot expect the
functional J(q) to be convex on Q, so we cannot be
sure that the algorithm will converge resp. stop.)

5. COMPUTATIONAL RESULTS

In our numerical examples we focuse on a special case
for the set Q. We assume the shape of the unknown bound-
ary to be a straight line, i.e.

r(x, q) := q1 + q2x

with the compact set Q given by

Q := {(q1, q2) ∈ R2|0.5 ≤ q1 ≤ 5 , 0 ≤ q2 ≤ 5}

We chose
q̂0 = q̂1 = 2

as parameters describing the true boundary Σq̂ and com-
pute solutions of two different direct problems. In the first
example we choose

f1
q = 10

g1 = 1
g2 = g3 = −1

and in the second one we change fq to f2
q (x) = 10x , x ∈

[0, 1] keeping the values for gi , i = 1, 2, 3. We use stan-
dard finite-element methods for elliptic problems to solve
these problems with a discretization parameter h = 0.1,
and we denote the computed solutions by u1 , u2 belong-
ing to f1

q , f2
q , resp. . The next step is to define our ”data”

by

fε,j
1 := uj |Σ1 + ε · random , j = 1, 2 , random ∈ [−1, 1]

In all experiments we chose ε = 10−2. In addition to the
Gradient Projection Method (GPM), which we described
in the preceding section, we made use of another method

for nonlinear optimization to minimize the functional J(q),
namely the Nelder-Mead Simplex Method (NMSM) (see
[15] and the references therein). It turned out, that both
methods provided comparable results. One cannot expect
the functional J(q) to be convex and twice continuously
differentiable – in this case at least the GPM would con-
verge to the absolute minimum [16] (for the convergence
properties of the NMSM see [15],[18]).Therefore we have
chosen different starting points in our numerical experi-
ments. In our results we can very well observe the fact,
that the problem is ill-posed, namely, for a pair of data
σ1,ex. , σ1,app. on Σ1 with

‖σ1,ex. − σ1,app.‖L2(Σ1) ≤ 10−3

the corresponding values of q were q̂ = (2, 2) , qapp. =
(1.72, 3.56)). We also found, that the boundary condition
on Σq influences the possibilities to identify the parameters
(q1, q2). Therefore we will discuss the results for the two
examples for fq in the following paragraph.

5.1 Results for fq = f1
q = 10

In this case the identification of q1 seems to be much
easier than the identification of q2. From none of the start-
ing points the relative error concerning q1 was bigger than
7.5% (for the GPM) resp. 3.5% (for the NMSM) after the
minimization procedure (see Table 1). In contrast the com-
puted values for q2 seem to depend very much on the start-
ing point, and the relative error for this parameter is much
larger than for q1. This means that the value r(x, 0) is
computed relatively exact, while the slope of the unknown
boundary can only be roughly estimated by our computa-
tions (cf. Fig. 1). The reason for this becomes clear, if we
look at the shape of the functional J(q) in this case (see
Figure 2). Due to the steep gradients in the q1−direction
we find relatively easy, that q1 must lie near the value 2.
But as the figure suggests, it is much more difficult to min-
imize J(q) along q1 = 2, and we observe that there are a
lot of local minimizers (for all starting points in Table 1
the value of J(q) after the minimization procedure was less
than 10−5.

Because there is no significant change of the computed
solution q as well as of the value of J(q) after about four or
five steps of the GPM, we stopped the computation at this
point. Of course one could also apply other stopping cri-
teria like the Morozov and the Nemirowskii stopping rule.

5.2 Results for fq = f2
q = 10x

With the modified boundary condition on Σq we get
computational results which differ from those in Section
5.1 in some aspects. Figure 3 shows certain characteristic
features of our results: The approximation to q1 is not as
exact as in Section 5.1, but in most cases we get a slightly
better approximation to q2 than before. Motivated by the
results for different starting points (see. Table 2 and Fig-
ure 4) we might assume that there is – as before – a strip in
the (q1, q2)-plane, where the local minimizers are located.
Now there is no strip parallel to any of the axes, but tak-
ing into account Figure 4 it might (purely heuristically) be
described by an appropriate neighbourhood of the line

q1 + 2q2 = 6



It is an interesting task for further examinations, to
clarify the relationship beetween the location of the local
minimizers and the boundary condition on Σq.

6. NOMENCLATURE

d unit vector in GPM (current direction)
f1 data corresponding to the

true solution q̂

fε
1 perturbed data

fq function describing the Dirichlet-
condition on Σq

g1 Neumann-condition on Σ1

g2 Neumann-condition on Σ2

g3 Neumann-condition on Σ3

G(q) = {(x, y) ∈ R2|0 < x < 1 , 0 < y < r(x, q)}
bounded domain

BV P boundary value problem
H set of active constraints

H1
fq|Σq

(Gq) = {u ∈ H1(Gq)|u|Σq = fq}
H1

0|Σq
(Gq) = {u ∈ H1(Gq)|u|Σq = 0}
J(q) = ‖u(q)|Σ1 − f1‖2L2(Σ1)

n ∈ N dimension of parameter vector
Q compact subset of Rn

q = (q1, . . . , qn) ∈ Q parameter vector,
on which r(x, q) depends

q̂ true parameter vector
r(x, q) ∈ C[0, 1] ∀q ∈ Q shape of the

unknown part of the boundary
ε maximum amount of data perturbation
ν the outer unit normal to ∂G(q)

Σ1 = {(x, y)|0 < x < 1 , y = 0}
Σ2 = {(x, y)|x = 0 , 0 < y < r(0, q)}
Σ3 = {(x, y)|x = 1 , 0 < y < r(1, q)}
Σq = {(x, y)|0 < x < 1 , y = r(x, q)}
Σ = Σ1 ∪ Σ2 ∪ Σ3

Π Matrix of normal unit vectors
of active constraints

∇q = (
∂

∂q1
, . . . ,

∂

∂qn
)

∀ for all
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Figure 1: True solution and approximations for fq = 10 with starting point (3,3)
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Figure 2: The functional J(q) for fq = 10



0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5

x

y

Approximation by NMSM (q=(2.10,1.68))
Approximation by GPM (q=(1.93,2.28))
True solution (q=(2,2))

Figure 3: True solution and approximations for fq = 10x with starting point (1,1)
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Figure 4: The functional J(q) for fq = 10x


