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Abstract. In this paper the non-characteristic Cauchy problem
ty — a(x)ugy — b{x)uy —clx}u =0 xe@D, teR

(0,8 =) teR (%)

ue(0,2) =0 rek
is considered. The problem (x)} is well known to be severely ill-posed: a small perturbation in
the Cauchy data may cause a dramatically large error in the solution. In this paper the following
mollification method is suggested for this problem: if the Cauchy data are given inexactly then
we mollify them by elements of well-posedness classes of the problem, namely by elements of
an appropriate co-regular multiresolution approximation {V};ez of L2(R) whick is generated
by the father wavelet of Meyer. Within V; the problem () is well posed, and we can find a
mollification parameter J depending on the noise level £ in the Cauchy data such that the error
estimation between the exact solution and the mollified solution is of Holder type. The method
can be numerically implemented using fundamental results by Beylkin, Coifman and Rokhlin
on representing (psendo)differential operators in wavelet bases. A stable marching difference
scheme based on this method is snggested. Several numerical examples are given.

1. Introduction

In this paper we consider the following non-characteristic Cauchy problem (see [10]):
uy — alx) gy — b()u; —c(x)u =0 xeD, telR
u(0, 1) = @) teR (1.1)
#(0,6)=0 reR.
Here I > 0 and a, &, ¢ are given functions such that for some A, A > 0
Agax) <A xe10,] ) (12
a € WH[0, [] b e WH[0,1] ¢ € L=[0, 1] c(x) €0 x €[0,1]. (1.3)
As we consider the problem in L2(R) with respect to time, we assume ‘
@ € L*([R). (1.4

The problem (1.1) is well known to be severely ill-posed ([141). In [10] a stability estimate
of Holder continuous fashion for the solution of this problem has been proved. In this paper
we shall apply the mollification method suggested in [7] to the problem (1.1). In fact, if
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the Cauchy data are given inexactly then we mollify them by elements of well-posedness
classes of the problem, namely by elements of an appropriate cc-regular multiresolution
approximation {V;};ez of L*(R) which is generated by the father wavelet of Meyer. Within
V; our problem is well posed, and we can find a mollification parameter J depending on the
noise level & in the Cauchy data such that the error estimation between the exact solution
and the mollified solution is of Hélder type. The method can be numerically implemented
using fundamental results of Beylkin et al [1] on representing (pseudo)differential operators
in wavelet bases. A stable marching difference scheme based on this method is suggested.
Several various numerical experiments show that our method is effective.

Another mollification method has been suggested by Manselli and Miller [11], and
Murio and further developed by Murio and his stdents (see [13] and references therein).
However, as has been noted in [7], the method of these authors cannot be generalized
to Banach spaces as in [7, 8], and they could not find reasonable mollification parameters
which yield exror estimates of the Hélder continuous fashion. For related papers, the reader
is referred to [2—-4, 15].

The paper is organized as follows. In section 2 we shall give some auxiliary results on
wavelets and the Cauchy problem in the frequency domain and in section 3 we describe
our regularization method and provide some error estimates. Section 4 is devoted to a
stable marching difference scheme and, finally, in section 5 several numerical examples are
presented.

Throughout the paper C, Ci, Ca, ..., C’, C”, ... are generic positive constants.

2, Auxiliary results

2.1. The Cauchy problem in the frequency space
Let S be the Schwartz space, and &' be its dual (the space of tempered distributions). For
a function ¢ € & its Fourier transform & is defined by

PE) = qo(x)e 5

\/_—oc

while the Fourier transform of a tempered distribution f € &’ is defined by

(foo)=0) Vpes.
For s € R the Sobolev space H*(R) consist of all tempered distributions f € & for which
FE)(L + |&|2)*/2 is a function in L2(R). The norm on this space is given by

o 1/2
uﬂm=(f|ﬂwM+mW@)

Now we are ready to examine the Cauchy problem in frequency space. Set

Ax) == f ’ a(s)"2 ds L= A()
0
and let v(x, £} be a solution of the Cauchy problem
a(x)ue (x, £) + blx)ux (x, §) + c(x)vix, §) —i&v(x, §) =0 xel0l], ek
v(0,E)Y=1 teclR (2.1)
1:.(0,5) =0 EesR.
The following lemma can be found in [10].
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Lemma 2.1, There exists an unique solution v of (2.1) such that
i) v(-, £) € WE[Q, {] for every £ € C,
(ii) v{x, -) is an entire function for every x € [0, {],
(iii) v(x, £} #= 0 for every { € C with Im¢ €0,
(iv) there exist constants C; depending only on A, A, a, b, ¢ such that for x € [0, {],

EeclR
[v(x, §)] < Crexp (VEI/2A())
[v@. §)1 > Crexp (VEI/2L)
02, ) < Cov/18Tenp (ViE24 ()

x5, §)] < Calglexp (VIET2400))

Furthermore it has been proved in [8] that if a solution of (1.1) exists in L2(R), then ¢
must be infinitely differentiable and
ID*olz € C2UNMs®*  VkeN (2.2)

where D = d/dt and C and s are some constants depending on the coefficients of the
differential equation in (1.1) and |«(!, )||2. Conversely, if (2.2) holds, then there exists a
local solution u of (1.1} and u(x, t) can be represented in the form

u(x, 1) = vix, D)p(t) 0<x<!
where v{x, D) denotes the pseudodifferential operator associated with the analytic symbol
v(x, £). For simplicity, we will use the abbreviation

T, ==v(x, D) 0g<xg! 2.3)
throughout this paper. It is clear that

i(x, §) = v(x, §)P(E).
From this equation and lemma 2.1 it follows

3.8y = 22800 650 = 2580, 5, @4
’ v, 8 v(, §)

2.2, Properties of wavelets

In this section we recall some basic properties of wavelets which are derived from [9].

Throughout the paper let ¢ be an orthonormal scaling function with its corresponding
wavelet ¢ such that 93 has compact support. For simplicity we assume ¢ to be the Meyer
scaling function defined by its Fourier transform

2y 12 g < =
$E =1 @212 cos [gv (%I’g‘l - 1)] 335 <l < 5‘-} @3
0 otherwise
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and v(x) + v(1 — x) = 1. Then ¢ is a C* function and the corresponding wavelet ¥ is
given by

(222 sm[ (—m - 1)} k<
2 3
7T

Y(E) = ~1/2,iE/2 4 (2.6
—vi{—I§l - — sl <
(2m)~%e5 “cos > v oo |§ -1 3 &
0 otherwise.
We write down the supports of ¢ and v, since these will be essential later,
" 4 4
Supp ¢ = [——3—, 3 ] @7
- 8= 2w 2w 8w
supp yr = |:—-§—, -—3—] ) [? —5—] . (2.8)

From [5, 12] we see that the functions
Yiale) =229 @x k) kel

constitute an orthonormal basis of the Hilbert space L*(R). Furthermore the v;; are
entire funciions, since their Fourier transforms have compact support. Consequently, the
multiresolution analysis (MRA} {V;};ez of Meyer generated by

Vi={e k€LY  ju(x) =222 x—k) s keZ

is m-regular for all m € N (see [9]). We will call such an MRA co-regular. The orthogonal
projection on the space V; is given by

Pif =) (fd100b1x
k

while
Qrf =Y (Fi¥s)Vix
%

denotes the orthogonal projection on the wavelet space W, with Vi, = V; @ Wy,
Remark on notation. Here and hereafter, )., is denoted by 3_,.
From [9] we have a Jackson-type inequality for the projection P, on V.

Theorem 2.1. Let {V;};ez be an m-regular MRA, and r, s € Rbesuchthat —m < r < 5 < m.
Then for any function f € H(R) and J € N the following inequality holds:

If = Brflar S C2Z72 | f L.

Moreover, from {9] we see that some Bernstein-type inequalities hold for the differential
operators DF, k € N.

Theorem 2.2. Let {V;};ez be Meyer's MRA and suppose J e N, r e R. Then for all f € V;
we have

1D* Fllar < C2Y7%) Fll e kel
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Proof. From [9, 12], we have |

D% fllgr < C2*)f |l e keN, feW, j>»0 (2.9)
ID*fllar <€ Cll Fllar keN, fe¥.

First, for f € V,;, J = 0 it follows

1D Fllar = WDy f i = ‘DkP0f+Z:D"QJ f
j=0
J—
< Coll Poflar + € Zzﬂ‘ 1Q; Fliar < C271 fllar. (2.10)
j=0

Since Py = Py + Q1. J € N, we see from (2.9) and (2.10), that

1 D% flil g = | D* By fllar < WD*Proafllagr + 1 D* @yt fllar < C2UD) £l e,
O

From this theorem a Bernstein-type inequality for the operator T (see (2.3)) follows
immediately.

Thegrem 2.3. Let {V;};cz be Meyer’s MRA and suppose J e Nandr e R, 0 < x < L. Then
for all f € V; we have '

NZe fllar < Cexp@YPPAGN| Fllz (2.11)

Progf. According to lemma 2.1, the symbol v(x, -} of T; satisfies .
[u(x, £)] < Cexp (@A(x)) <C Icosh (JEA(;:))| . 2.12)
Thus, theorem 2.2 shows that for f € V;
WL fllar = TP f s = ( f_ :lv(x, OFFEPA+ERY ds)m
< c"( f " Jeosh (vEEA) E?(&)Iz (L+151RY d&)m
% &, (g
( f gt (AG)

!
= (A R 2 )‘”"
<C ; o (f_ [GE) By F@)PQ + 6 d

1/2
(é‘)"Pff(E)\ (1 + &P dE)

" = (A(x))Zk £
=C"Y || D*P; fllar
&y Pl

A
<o 3 R

= C' cosh@YD2ANN f & < CexpY2AGN | £l e
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3. Regularization

Now we suppose that the function ¢ is given inexactly by ¢, with ¢ — @:|lgr < & for
some r < 0. Since g, belongs, in general, to Z2(R), r should not be positive. We are
interested in approximating the solution #(f, x) of (1.1) from ¢, in a stable way, For that
it is necessary to require a condition on the solution of (1.1) at x = /. We assume that
S @) :=u(,t) exists and belongs to H*(R) for some s € R, 5 > r, i.e.

FEO =000 awd  feH®.
From (2.4) it follows
u(x, £)

a(x, &) =v(x, ’§)<3(’§)— 20, E) —222F ).

Since the Cauchy data are given inexactly by ¢, we need a stable algorithm to approximate
the solution of (1.1). Our method is as follows. We consider the operator

Tes=P/ TP

and show that it approximates T, in a stable way for an appropriate choice of J € N
depending on £. A discussion of the numerical implementation of this procedure will
follow in section 5. At first, we see from the Bernstein-type inequality (2.11) that the
problem of calculating Ty se. is well posed. Now we will prove some stability estimates
for our method. We have

1T — T s@ellar < BTxe — Tepellar + 1 T s (0 — @) e (R
The second term of the right-hand side satisfies

17,4 = @)l < WTxPirle — @)l < Cexp2Y~D2AM)e (3.2)
as one can see from theorem 2.3. For the first term in (3.1), we have (see also [9])

1Tep — Tespltar < 1 — POLplla + WU — Prellar (3.3)

For the estimation of the terms on the right-hand side, it is essential that ¢ and ¥ have
compact support. 'We introduce the operator M; which is defined by the equation

Mig=(1~x)8 JeN

where xs denotes the charactenstlc function of the interval Iy := [—3£27, £27]. Since

Pi€) = 2712527y (3:4)
we have tj'}j,k ()=0,£ €I, for j 2 J according to (2.8). This yields

(8, W) = (&, ¥ip) = (1 = x0)E, ¥ip) = (Mg, ¥y ) izd, kel
for arbitrary g € H"(R), and we conclude

U=Pg=> 3 @ Wte= 22 (Mg, i)k = (I — P)Mg.

jz2l ok =l ok
Hence, we have
T—-Pry=I—-P)HM; JeN (3.5)
and, by an analogous argument,
Qi=0sM; JeN (3.6)
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Furthermore, ,
Bro®) =) (g, ds0)27 e #2783 2778)
4

and, according to (2.7),
Pro@)=0  |£]>$n2.
Thus,

N2
pr [vix, E)FEIPA + 1EPY d’-;')

T

I — Poyollw < ( fl

=

1/2
+( flg oy PG DU = PO OPAT Y de) . 3.7

The first integral on the right-hand side of (3.7) can be estimated by

1/2 A
( f loCx, E)GE)PA + 1§ d$) - ( f v(x, )
EI=4F2! .y

S n®
R L— ( f |f(§)|2(1+|§|2)“"cus)u2
S pate | 9GE THEREZ| s

2
< C2 76 exp (\/ ;2” (A — L)) ILf e

< C2776 " exp(27 2 (A(x) — LIS Il re-
From (2.8) and (3.4) it follows, that for j > J
Ge® =0 & <in2’.

2 12
1+ &P d§)

Since

d—-Ple=>)_ 0

=7
we see that

W — P €)= Qrp®) |5l < 3w2’.
Hence, the second integral on the right-hand side of (3.7) satisfies

1/2
('/|;"l PP, lo(x, E)((! —P;)¢)A(§)[2(1 + £ de)

e 1/2
= ( flf o, P DTOF A LY de)

< AT Qrollar < Cexp7PAGNIQ 0lar (3.8)
since @ ;¢ € V. Furthermore,

100l = QsMiplla € M@l

1/2
~([ . wera+ieprs)
6152 )

_ ( f f&
HEE S

v{l, &)

2 12
(I+ &P d§)
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< C26D exp (—\/ng / ZL) ILf N ars

< €277 N exp (—272L) | fll .
Together with (3.7) and (3.8) this leads to
1T ~ PRollar < C277¢ exp(2/2(A(x) — LY ]l -
Now, we estimate {|(I — P;)T.¢|zr. By (3.5) we have
I — PNTxpllar = N — PM;Tepllar < C'27C Mol

172
- c'z-m—f)( [ weosera+gny ds)
eI/
u(x, £)

_ Crz—l(s—r)( f
iz | v, §)

~J(s—r vir,
<2776 sup %‘ I it ere
[gl;,lélzf U( ’ E)

< €276 exp (\/gz’%(x) - L)) 0L 1 zze

< €270 exp(272(A() — LI F N e
Putting all together, we finally arrive at
ITee — T, 1@ lar < Crexp(2Y™P2A))e + 2277677 exp2/2(A) — LY 11~ (B9)
We want to obtain some stability estimates of Holder-type for our method using (3.9).

Choosing
—2(s-r)\ \ 2
J* = [Iogz (2 (% In (é (ln %) )) )}

(where [¢] denotes the largest integer less than or equal to a € R), we get

- 1 1 1 ~2s—1)
exp(2Y "V 2A(x))e < exp (E In < (ln ;) Ax) ) e

1\ ~26-rAC)/L
= gl-Am/L (ln _)

f@®

2 1/2
(1+ &P d§)

£
and

£

—2(s—r)\ \ 2
(N}
. L & g

I 2(s—r}
~ \Inl +In((n1)-26-) ‘

. 1 —As—r¥HAx)/L-1)
exp(2” 2 (A(x) — L)) § gAWIL (1:1 -)

Furthermore,

—{s~r)




Regularization of a non-characteristic Cauchy problem 1255

I C;, C; and [ flg- are known, with

. 1 {Calfllae {, CullFleae Y2\
= [Icgz (2 (Eln( Cie (In Cot )

we get similar estimates. Now, we summarize our results.

Theorem 3.1. For every fixed J € N the problem (1.1) with the Canchy data ¢ in V; is
well posed. Suppose that the solution f of (1.1) exists at x = [ and belongs to H*(R)
for some 5 e R, i.e. f = Typ € H'(R). Suppose further that ¢ is given approximately by
pe with [[¢ — @e |l < & r < minf0, s}, then the problem of calculating T ;¢. is stable.
Furthermore, with

)]

the following stability estimate holds

Lini 2=
1Tx¢ — Tx s @ellr < | C1 + Coll flle ( £ )

In i+ In{(ln 1)~26-")
1 )—Z(s—r)A(x)/L

XSI_A(x)/L In =
£

- 1 (Clfle {, Cllfla "\
J7 = ]:logz (2 (Eln( Cie (ln Cot )

LIn(Cs| £ |l ms/ Ca€) )2@"-')
In(Ca f g/ C16) + In(An(Co| f [[ s/ C18))~2)

~ . =2(s—r)A{x)/L
<l F i e Crey -4 (i L) .
!

With

we have

[Tz — Tr,geellar < (1 + (

4. A stable marching difference scheme

As in [8] we consider the system
v, =w xe{0,h, tekR
a(x)W, + bYW + c(x)U = U; xe0,D), teR
U@, =v({) telR
wWo,0H=0 telR.
Setting J := J* (J**) and ¥(¢) := P;¢.(r), this system is obviously the mollified version
of problem (1.1) with noisy Cauchy data ¢, (). Hence, the solution of (4.1) is given by
Ulx, ) =Ti Pro:t)
Wix,t) = Ue(x, t).

From the proof of theorem 3.1 we easily obtain that [Ty — Ty Proe| g satisfies the same
stability estimate as || Tog — Ty @l ar. This shows that it is enough, to solve the mollified

(4.1)
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problem (4.1), to get an approximate solution of {1.1). We are now interested in an
unconditionally stable finite difference scheme, that approximates the solution of (4.1).
Consider a uniform grid on the [0, ] x R plane:

{(xn=nh, ty=mr:n=0,1,....N, h=I/N, meZ)}.
For a function W defined on [0, ] x R we set

W2 = W(x,, tm).
Following Carasso [2] and Murio [13], (4.1) is discretized by

Un-H n

Un™ —Un _ = Wit n=0,1,....,.N, meZ }
Wn+[_wn Un

a”%—i—b"W,ﬁ-{—c“Uz—L[zr—ﬂl— n=0,1,....N,meZ!| @42

vl =w, mel
w2 =0 meZ.

It is clear that this difference scheme has a local truncation error which behaves like
O(h + %), Taking the discrete Fourier transform (see [8, 13]) in (4.2), we get

Fin+1 _Tm ~
U'*“(E)k U (€)=WH+I(§) n___O,L.“,N
il _ tun
a" w (E)k W(E) __{_bnwncg) + ﬂU"-(&) Sli’l(ff) Un(S) n=0,1,...,N}
Uo@) = B)
W) =0.

4.3)
Thus, forn=0,1,..., N
sm(ré)

W) = (-—z—:h + 1) Wh(E) + :—,, ( —c" +i
gerie) = nW ) + T )
a - Jt
- (1 LB (——c" + 1%)) 0 €) + 4 (—b—h + 1) ().
an T ar
Let |b(x)| < B, |e(x)] € C and 0 < A < |a(x)|. For 0 < |£] < w/7, we have

@) < (1 + Bh—f— Ch-}- ’;S‘“(”‘SD

) 3

) ax{{T*E), W)}
R sin(z§ )

A T
Taking £ sufficiently small and using sin(z|€|}/t < [&], we obtain

maxti0 @117 @1 < (1+ 22 Y 3

< enh(B+C+I€l+?~)/l|ﬁ'}(§-)]
< e‘("+3+c+|$|)/"[13("g')i.

T (61 < (1 + 2524 Sy + h) max{|(®)], [ @)},
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Since the Fourier transform of Pse@ has compact support in the interval [—v,v] =
1= 47f2",““2"] taking 7 < #/v (that is 7 < 32 7y, we have U = by the Poisson
summatlcm formula. It follows that

max([U" . W™ 12} = 01T | oomyensr Wl 2ecmonser}
< N PHBFCHDA G| | 2 ey

~
g I(A+B+CHv) /2 II‘I"HZ- (4'4)
Hence, we conclude

Theorem 4.1. The difference scheme (4.2) approximates the problem (4.1} with a truncation
error behaving like Ok + 72). Furthermore, if 4 is sufficiently small and 7 < %2‘”’ , then
it is unconditionally stable and the estimate (4.4) is valid.

5, Numerical examples

5.1. Implementation

‘We want to discuss some numerical aspects in this section. H the function v(x, &) can be
found explicitly, one can directly use the method of section 3. For a function g, we have

Trg=, (Z(Tx@,fc, ¢ 18, ¢J,k))¢;.z

1 I’
and
Tebrandi = [ o WP DBEPS g
Hence we have only to compute the numbers
o= RO

and convolve this sequence with the wavelet coefficients (g, ¢s ;) of g, to get the wavelet
coefficients of the function T; sg. The authors of [1] have proposed this method in the
case of exactly given g. To approximate the solution of (1.1), we use it with g = @, and
J=J%

If v(x, &) is difficult to find, we only compute Psg.. Then the marching difference
scheme (4.2) from section 4 is applied to solve (1.1). -

3.2, Examples

We have placed some figures at the end of the paper which show that our method works
well. In all examples the inverse heat conduction problem

Uey =4, u(t,0) =g w0 =0 reR 0<x<1 6.1)

is considered. In this case the symbol v is given by

v(x, ) = cosh (x ig) .

Since the Meyer wavelet decreases rapidly at infinity, in general, if we are interested in the
solution over a finite interval of ¢, there is no need to care so much whether ¢ € L(R).
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(=T S BV

(=T . L V)

3r Approximaticn —
exact solution ~-=

o5 \_._/ .

) -1 0 1

Figure 1. Example 1: ¢(f) = 241 (a) exact solution; (b} approximation with p{f) —@e ()| <
£ =0.01; and (¢} exact solution and approximation at x =1 (¢ = 0.01).

Example 1. Let ¢(t) :=t* + ¢ (not in L2(R)). Then
w(t, x) =t*+t+ @+ %)x2 + x*/12.

We are interested in approximations of u#(z, x) for ¢ € [—2, 1] only. We allow a random
noise in ¢, in fact, |p(t) — @:(t)} < & = 1072 In this example the approximation is
perfectly good (figure 1). One cannot see any difference between the exact solution and
our approximation. We have also applied our marching scheme to this example and had the
same results as for the method above but we do not present them here.

It is interesting to observe what happens if we use the measured Cauchy data only
in the interval in which our approximation is found. Thus, in this case we suppose that
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[+ o

©

3IF Approximation ——
exact solytion ~==

2 -1 1] 1

Figure 2. Example 1: () =2+, —2 €1 < 1: (a) approximation with [¢(t) — @:(¢)| €
g = 1079; (b) approximation with |o(f) — @:(z}] < & = 0.01; and (¢) exact solution and
approximation at x = 1 (¢ = 0.01).

(1) = @e(—2), t < =2 and @.(t) = (1), t > 1. Numerical results of this example are
shown in figure 2, where in the first plot ¢ = 1075, and jn the second one & = 1072, The
last plot compares the exact solution with its approximation at x = 1 with & = 1072,

The last two examples are constructed as follows. Choose a function f as the soltion
of (5.1) at x = 1. Then solve the well-posed problem

Uyy = Uy (8,0 =0 u(t, 1) = f(z) telR 0<xg 1. (5.2)

We use the FET to compute the solution (2, x) of (5.2). After that we take ¢(t) := u(t, 0} as
the Cauchy data in (5.1), where a random noise in ¢ is allowed. Then we try to reconstruct
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®

1P -
08 |— proximation
exact soludon ———
06 |- .
04 |- -
02 b -
0
3 -2 -1 0 1 2 3

Figure 3. Example 2: f{f) = exp(—#2): (&) exact solution] (p) approximation with
lo{t) — g (1)] € & = 0.01; and (c) exact solution and approximation at x =1 (¢ = 0.01).

f from the inexact Cauchy data.

Example 2. f(t) = exp(—t2), ¢ = 1072 The solution is to be found in [—3,3]. Note
that in this example @(f) = u(z,0) (where u(t, x) denotes the solution of (5.2) with
F(&) = exp(—t?) is a function in L?>(R). The numerical results are outlined in figure 3,
where the first plot indicates the exact solution, the second one shows the approximation
with a random noise on ¢ by our method, and the last one compares f with Ty jg.. We
also applied the marching difference scheme (4.2) and obtained the same results. So we do
not give them here.
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(b)

il

I
]

'.
bl

Approximatiop —

i
E exact solution ———
;
1
1] ——.._—._..—-q,f\- E Y
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Figure 4. Example 3: f = x[—0.4.041: (@) approximation with |o(t) — ()| € &= 1075; (&)
approximation with [@(z) — @:(t)] € £ = 0.001; and {c) exact solution and approximation at
x =1 {e=0001)

Example 3. [ = Xi—04,041, &€ = 10~3. This is a hard test example in the inverse heat
conduction problems, since f € H*(R) only for s < % Available methods for this example
are not giving good approximations to the exact solution (see, e.g. [13]). It is interesting
that although f € H*(R) only for + < %, u(t, 0) is infinitely differentiable, and it satisfies
(2.2). The numerical results of the method in section 3 are outlined in figure 4, where the
first plot indicates the approximation with noise £ = 107, the second one indicates the
approximation with noise & == 1073, and the last one compares the exact solution at x = 1
(that is u(1,1) = f(t) = X{-04.04(t)) with its approximation for & = 10~3. Numerical
results of the stable marching difference scheme of section 4 are outlined in figure 5.
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Figure 5. The marching difference scheme (4.2) for example 3: (a) approximation with
[@{t) — @) < & = 1075; (b) approximation with Je(t) —~ ¢:(*)] £ £ = 0.001; and {c)
exact solution and approximation at x = 1 (¢ = 0.001).

6. Conclusions

Our regularization method for the severely ill-posed Cauchy problem (1.1) fulfils Hoélder-
type error estimates. The method can be easily numerically implemented and gives very
good numerical results. Our stable marching difference scheme based on the methed is
convenient for numerical calculations and shows that our method is effective,
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