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Abstract. The sideways parabolic equation in the quarter plane

Uy = a(X)uxy +b(x)uy + c(x)u x € (0,00),1 € (0, 0)
u(l,t) = g(t) t € (0, 00)
u(x,00=0 x € (0, 00)

is considered. This is a model of a problem where one wants to determine the temperature on
both sides of a thick wall, but one side is inaccessible to measurements. This problem is well
known to be severely ill-posed: a small perturbation in the datapay cause dramatically

large errors in the solution. The results available in the literature are mainly devoted to the case
of constant coefficients, where one can find an explicit representation for the solution of the
problem. In this paper a stability estimate of thél#ter type for the solution of this general
problem is established, it is also shown how to apply the mollification method recently proposed
by Dinh Nho Hao to solve the problem in a stable way.

1. Introduction

In several engineering contexts there is sometimes a need to determine the temperature on
both sides of a thick wall, but one side is inaccessible to measurements (see, e.g. [1,12].
This problem occasionally leads to the following sideways parabolic equation in the quarter
plane

uy = a(xX)uyy + b(x)u, + c(x)u x € (0,00),t € (0, 00) (1.2)

u(l, ) = g) t € (0, 00) 1.2)

u(x,0 =0 x € (0, 00). (1.3)

Herea, b andc are given functions such that for sorheA > 0

A<alkx) <A x € (0, 00) (1.49)
and

c(x) <0. (1.5)
For simplicity, we suppose that

a(-) € C%(0, o) b(-) € C(0, c0) c(-) € C(0, 00). (1.6)
Furthermore, throughout the paper, we suppose

g € Ly(0, 00) .7

which is considered as the measured data in the above-mentioned model.
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The problem (1.1)—(1.3) is well known to Iseverely ill-poseda small perturbation in
the datag may cause dramatically large errors in the soluiion, 7) for x € [0, 1) (see, e.g.
[12] or corollary 2.3 below). There are several methods for solving it in a stable way (see,
e.g. our survey in [5], or [7]); however, they are mainly devoted to the case of constant
coefficients, as for this one can find an explicit representation for the solution. The aim
of this paper is to show how to apply the mollification method suggested in [3, 5, 6] to the
general problem. To do this we first solve tivell-posedproblem
u; = a(xX) g +b(xX)uy + c(x)u x € (1,00),t € (0, 00)
ul,t) =g t € (0, 00) (1.8)
u(x,00=0 x € (1,00)
to find i(¢) := u, (1, t). As a result we get the Cauchy problem
U, = a(X) )y + b(xX)uy + c(x)u x €(0,1),t € (0, 00)
u(l,1) = g() 1 € (0, 00)
uc (L, 1) =h(@) t € (0, 00)
uix,0=0 x € [0, 1].
The next step is to solve this Cauchy problem in a stable way. The crucial point is how to
do it when the results in [9, 3, 5, 6] allow us to work only with the case when eithel0

or g = 0. One immediately has the idea that either one should split this Cauchy problem
into two independent Cauchy problems

(1.9)

u,l = a(x)u)l(x + b(x)u)lc + c(x)ut x €(0,1),7 € (0, 00)
ut(1, 1) = g(1) t € (0, 00)

1.10
ul(1,1)=0 t € (0, 00) (1.10)
ut(x,00=0 x €[0,1]
and
u? = a(x)u®, + b(x)u? + c(x)u? x €(0,1),1t € (0, 00)
2 _
u<(1,t)=0 t € (0, 00) (1.11)

u?(1, 1) = h(r) t € (0, 00)
u?(x,0) =0 x €[0,1]

and solve them by the technique given in [3, 5, 6] and then tiakeu® + u?, or one should
solve the well-posed problem

uf‘ = a(x)ui’x + b(x)uf(‘ +c(x)u® x €(0,1),t € (0,00)
u30,1) =0 t € (0, 00)

1.12
ud(1, 1) = h(r) t € (0, 0) (1.12)
u3(x,00=0 x €[0,1]
and then solve the Cauchy problem
u:‘ = a(x)uﬁx + b()c)u;1 + c(x)u® x €(0,1),t € (0, 00)
A4, =g@) —udt t € (0,
u'(l,1) = g(t) —u(1,1) € (0, 00) (1.13)

u(1,1)=0 t € (0,00)
ut(x,00=0 x €[0,1]
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by the technique given in [3,5, 6] and take= u® + u*.

The second approach is preferential as we have to solve only one ill-posed Cauchy
problem. A matter of fact isican we do the just-mentioned procedurek?seems to us
that the researchers in the field did not take this question into consideration. First, we note
that, in the Cauchy problem (1.9), the Cauchy datand # cannot be arbitrarily given.
For example, Holmgren [8] has proved that a necessary and sufficient condition for the
existence of a solution of the problem

Uy = Uy O<x<10<t<T
u(0, 1) = g() O<t<T (1.14)
u(0,1) = h() O<t<T
is that
g'(t)dr
0(1) _h(t)+—
t—l’

be a function of a Holmgren class 2. A functiah(y), defined in(«, B) is said to belong to

a Holmgren class 2 if it belongs ©*(«, B), and there exist positive numbevg > 0 ands

such thato™ (r)| < M(2n)!s?',Vn € {0, 1, 2, ...}. Secondly, in [4—6] we have also proved
that if » = 0, theng must be infinitely differentiable anglg™ |, < c(2n)!s?,n =0,1, ...,
wherec ands are some positive constants ahd||, is a defined norm. The same result is
also valid forh if ¢ = 0. Thus, ifg (or &) does not belong to the above-mentioned class,
then we cannot split our Cauchy problem (1.9) (or the problem (1.14)) into two independent
Cauchy problems (1.10) and (1.11), as they have no solution! Furthermore, in general, if
g (or h) belongs to the above-described class it guarantees atgal solution of our
Cauchy problem (see [4-6]). We note also that here we are working neithanalytic
Cauchy probleméor parabolic equations. Thus, in order to split the Cauchy problem (1.9)
into two independent Cauchy problems (1.10) and (1.11) or to deduce it to the Cauchy
problem (1.13) we have to prove thatandis are so smooth such that the Cauchy problems
(1.10), (1.11) and (1.13) hawglobal solutionsup to x = 0. The main contribution of this
paper is to prove this fact as well as to deliver a stability estimate of tideHtype for the
solution of the problem (1.1)—(1.3), although we do not claim any originality of our idea.

In this paper we shall use some estimates for the asymptotic behaviour of solutions of
a second-order linear ordinary differential equation depending on a parameter in a finite
interval given by Tamarkin [13], Coddington and Levinson [2], in the half-axis given by
Naimark [10] as well as several estimates of Knabner and Vessella [9].

In the next section we establish some regularity properties for the boundary value
problems for parabolic equations in the quarter plane. The last section is devoted to
the problem (1.1)—(1.3): a stability estimate, splitting the Cauchy problem (1.9) to the
Cauchy problems (1.10), (1.11) and (1.13). Since the mollification method, stable marching
difference schemes for the Cauchy problems (1.10), (1.11) and (1.13) as well as numerical
experiments for them are given in [5, 6] we do not repeat them in this paper.

Throughout the paper all constantsg, c, ..., c27, C1, C2 are tacitly assumed to be
positive.

2. Direct problems

Consider the boundary-value problem for our parabolic equation in the quarter plane

Uy = a(X)uyy +b(x)uy + c(x)u x € (0,00),t € (0, 00) (2.2)
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u(©,1) = f(1) 1 € (0, 00) (2.2)

u(x,00=0 x € (0, 00). (2.3)
We assume

f € L2(0, 00). (2.4)

As a solution of the problem (2.1)—(2.3) we understand a funetiant) satisfying (2.1) and
(2.3) in the classical sense; for every fixed [0, co), the functioru(x, -) and its derivatives
uy(x, ), uxy(x, <) belong toL,(0, co) and limy_o llu(x, ) — fllL,0.000 = 0. Furthermore,
for the uniqueness of the solution, we require thatx, -)||.,0.0) be bounded.

Since the functions of in our consideration are defined only in, [®), in order to
apply the Fourier transform technigue to them we extend their definitions to the whole real
t-axis by defining them to be zero for< 0. Further, let

A

w(é‘) p— i /Oo w(t)e*ift dr
V2 )

denote the Fourier transform af, and|| - || denote|| - || 1, mw)-
We associate (2.1)—(2.3) with the following boundary value problem for the ordinary
differential equation
iEv(x, &) = a(xX)vex + b(X)V, + c(x)v x €(0,00),£€eR
v0,6)=1  £eR (2.5)
lim v(x,£&) =0 £E+£0
for & = 0 we requirev(x, 0) be bounded as tends tooco.
We note thafv(x, £)| < 1 for & # 0. In fact, setting

w=mm=/gﬁi— 2.6)
o ~a(s)
we see that the functiofi(y, &) := v(x, &) satisfies the system

£V = Uy, +d(y)0y, + () EeR,ye(0,00)

(0,6 =1 £eR

Jim 5(y,6) =0 £#0

where

c(y) ==c(x) d(y) = [(b — a,/2)//a](x). (2.7)
Taking the conditions (1.4)—(1.6) into account and applying an easily modified version
of the maximum principle [11, theorem 3, p 6] for the infinite half-axisd®) to |3 (y, £)|?,
we see thato(y, £)| < 1 for & #£ 0. Thus,|v(x, §)] is uniformly bounded.
Suppose that the problem (2.1)—(2.3) has a solutioiihen

u(x, 1) = \/15 foo v (x, £) f(£) dg for x € (0, 00). (2.8)

In fact, for a function defined on [Qoo) we denote its Laplace transform iy, and the
inverse Laplace transform df by £L~1{H} (see [14, ch 2]). Taking the Laplace transform
of both sides of (2.1) and (2.2), having the condition (2.3) in mind, we get

sU(x,8) =a(x)Uy, + bx)Uy + c(x)U x € (0,0),s € C

(2.9)
U, s) = F(s) x € (0,0),s € C.
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Furthermore, in order to have a unique solution, according to the maximum principle just
mentioned above, we require that limy |U (x, s)| = 0, if Re s > 0. If a solution of the
problem (2.1)—(2.3) exists, then

u(x, 1) = LHUYx, 1).

According to theorem 7.3 in [14, p 66], we hav&'{U}(x,7) = 0 forr < 0 and
L~YU}(x,0) = u(x,4+0)/2 = 0. On the other hand, for a functiom which vanishes
on the negative-axis, the Fourier and Laplace transforms are related via

W(i§) = VoriE) & eR.
Thus, from (2.9), on putting = i€,
i(x,§) = v(x, §) f ().
Hence the equality (2.8).
We see that thig satisfies the condition (2.3). In fact,

&5 i(x, &) dg

1 T
I/l(.x,t)lelm E/‘
—00 A/ -T
1 (7.
= lim 7/ e'U (x, i&) dE
-T

T—o00 27'[

1 iT
= lim —/ e'U(x,s)ds
—iT

T—o00 271
= L7HU}(x, 1)
which has just been proved to satisfy the condition (2.3). For further argument, the reader
is referred to [9, p 580].

We note that since(x, &)| is uniformly bounded, the solution of the problem (2.1)—(2.3)
is stable inL,-norm.

Lemma 2.1. There exist constants, k = 1, 2, 3, 4, such that, forx € [0, 1] and |¢]| large
enough, say| > &,

18 AOWVEIZ u(x, £)] < cpe AOVEZ, (2.10)
caV/IEI€AOVEZ y (x, &) < cay/|E|€AOVETZ, (2.11)

Proof. Takingy = A(x) as in (2.6), the functiod as in (2.7) and performing the transform

(9]
w(y, &) :=v(x, &) exp(% /y d(s)ds) (2.12)
0

in the problem (2.5), we get

wyy (v, ) = [q(y) +iE]w(y, &) y€[0,00), R (2.13)
w(0, &) =1 £ eR.
Here,
q(y) = 1 (—4a" + 8Y' +3a”*/a — 8ba'Ja + 4b? Ja — 16¢)(x). (2.14)
Let! be a fixed number greater thad@). On the interval [0/], the functionw(y, &)
satisfies the boundary-value problem
wyy (¥, 6) — [q() +iE]w(y, §) =0 ye(@),§eR (2.15)
w(0,&) =1 w(l, &) =w(, &) & eR. (2.16)
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We note that, sincév(x, )| < 1 for& #£0,
1
lw(l, §)| < eXP(%/ Id(S)IdS> =e() for & #0.
0

Following [13] and [2, p 308] the equation (2.15) has two fundamental solutiohsind
w~ which, for sufficiently larges, have the following representations

+ __AyE [iQ(y)]}
w(y,§) = €* {1+ T (2.17)
— i [£0()]
wi(y, &) = +,/ige?VE {1+ wg} (2.18)
where
JE={¢mmu+p £>0
VIEI/2(L =) £ <0
and

y
00y) = %/O q(7)dr.

By [«] we understand Birkhoff's expression][= « + E/&, whereE = E(y,§) is a
continuous function in both variables and uniformly bounded for Ig&rge
Set

wt(0,&) w (0,8

A@8=‘WU£)U)@8
Cwt(n 8 w(.6)
My O =yt 6) w6
_wtr &) w ()
A“L}“S)"“w+«xs> w0
We have
Al v, Asll, y,
w@fﬁ=f%fga+wdf%%%%§l
Now we estimateA(l, §), A1((, v, &) and Ay(l, x, &). From (2.17),
- e iviE [Q@D( [—mM)
AL E) = w (0. 6)w (1, &) — w(l. Ew(0.&) = (1+wS 10
gt (14 1200) (1 100N g (1, 100
Vig Vig Vig

(80 (11 1900) o, 000)|

For & large enough, sajt| > &, there exists a constant such that

oot (14 1000 (1. 000) _ ( [Q(l)]>(l+[—5_£0)])”
| |
oo )2 |

[ ) e 5

<
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since|e 2ViE| < e V%,
Analogously, there exists a constagtsuch that forf large enough, sajt| > &,

(o 57) 00 s 5 1 0

e 1 1291) ., o)

[oWD] [—0(0)]
“(“ JE)(H JiE >H>

since|e 2ViE| = e IV2El s small if ¢ is large enough.
Thus, there exist constants and cg such that, for&| > max{&,, &},

>

ce€VEZ <A, 8)] < cs€VEI2, (2.19)
Quite analogously, there exist constantscs, cg, c19 Such that forg large enough

creIVEIZ ALy, )] < cge VIR, (2.20)

co@VEV2 < Ap(l, y, £)] < c108”VET2, (2.21)

From the last three inequalities we see folarge enough there exists a constant such
that, fory € [0, A(D)],

Al(l,y,f) Ag(l, y7$)
W O < | =37 |+ w8l ’A(lg)
< SBeVEIR2 L 10, ) eo-DVIE2
Cp C6

< Clle—yv\é“\/Z.

Furthermore, fog large enough there also exists a constapsuch that, fory € [0, A(D)],

A1l y, §) Ao, y, &)
w3, O = || — o |~ wl O —
A, §) A, §)
> | eE2 _ Cloe(l)e(ng—/z‘
Cs Ce
= |7 10, (1)e@-DVE2| gy VET2
Cg Ce

> e WVEIR2,
Thus, there exist constantg; andci» such that, forg large enough ang € [0, A(1)],
c11€VEVZ Cw(y, &)] < erpeVEVZ,

Taking the transform (2.12) into account and noting that [0, A(1)], we thus prove the
inequalities (2.10) of the lemma. The inequalities (2.11) are proved quite similarly.

Corollary 2.1. If the boundary value problem
a(xX)vec(x) + b(x)ve(x) + c(x)v(x) =0 O<x <o
v(0)=1 v(x) is bounded as — oo.

has a unique solution, then there exist constantand ¢, such that

e ADVEIZ Cy(1, )| < ce ADVEIZ VE e R. (2.22)
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Proof. First, we note that(1, &) # 0 for & # 0, otherwise the Sturm—Liouville problem
a(x)vex + b(x)v, + c(x)v = Av x € (0,1
v(0,A) =1 v(1,A) =0

has imaginary eigenvalues.
For & = 0, we have the boundary value problem

a(x)vee(x, 0) + b(x)ve(x,0) + c(x)v(x,0) =0 O<x <o
v(0,0) =1 |v(x, 0)| is bounded ag — oc.

We see thaw(1,0) # 0. In fact, if v(1,0) = 0, thenv(x,0) = 0 for x > 1, since this
problem is assumed to have a unique solution. Thds0) = 0, v, (I, 0) = 0 for any/ > 1.
The Cauchy problem

a(xX)vee(x, 0) +b(x)ve(x,0) + c(x)v(x,0 =0 O<x <l
v(l,00=0 v, (1,00 =0

has a unique solution(x, 0) = 0. Itis a contradiction, since(0, 0) = 1. Thus,v(1, 0) £ 0.
Consequentlyly(1, £)| > 0 for |&] < &, where&y is the constant in lemma 2.1. The function
lv(1, £)| is continuous in the closed intervat-§g, &) and therefore attains its minimum at
a point£ in this interval. Hencelv(1, £)| > |v(1, £)| > 0. Thus, there exists a constait
such that, for&| < &,

S AOVEZ < 1y(1, £)).

Combining this inequality with the first one in (2.10), we see that there exists a coastant
such that the first inequality in (2.22) is valid. The right-hand side inequality in (2.22) is
trivial.

Remark 2.1. From the maximum principle we see immediately that, foe [0, 1], the
right-hand side inequalities in (2.10) and (2.11) are valid fogatl R with other constants
¢ andcy. It follows also that forx € [0, 1] there exists a constants such that

e (x, &) < cal€ e ADVEN2 VE € R.

Remark 2.2. If the functiond(-) is not positive and the function is summable in every
finite subinterval(0,7),0 < I < oo, then we can very simply prove lemma 2.1. In fact, if
d <0, then lim_ . w(y, &§) =0 for & # 0O, from theorem 2.5.1 in [10] we have &s— oo

_ o E 1
w(y, &) =€ [1+ O (ﬁﬂ (2.23)
wy (y, &) = yige?VE [1+o(\/1g)] (2.24)

uniformly with respect toy € [0, co). Hence the lemma.
Corollary 2.2. For any fixedx > 0O, the operators

f € L2(0,00) = u(x,-) € L2(0, 00)
and

f € L2(0,00) = uy(x,-) € La(0, 00)
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are infinitely smoothing. Furthermore there exist nonnegative constanéndc;s such that

2n
‘ il L;(;, ) H < c14(2n)! (;{f)) (2.25)
an-&-lu(x, ) \/é 2n
‘ T oxar H < as(2n + 1) (A(x) Vn=0,12,.... (2.26)

Proof. For anyx > 0andrn=1,2,..., we have

9"u(x, - o 12 o A 12
‘ uix, ) =</ |(|g)"u(x,g)|2dg) =(/ I(IE)’lv(x,E)f(s)lzd«?)

ot"
oo 1/2
<e ( / &2 e AWV |f(s)|2ds)

o0

< cosupE|" e AOVEZy | £
EeR

2n
2n/2
< e (eA(x)) ||f||

e2”(2n)!( V2 ) ”f”

< e —
Jarn \ eA(x)
2n
2n)! 2
@) (\[> A1

< -
“2o/7 \Aw)
Here we have used the following inequalities:
yPe < (p/ec)? foranyy >0,¢>0,p>0

and
Kk < ¢ k.
2k
Setting
.
c14 = fﬁﬂf”

we get the inequality (2.25).

Thus, forx > 0 the functionu(x, ¢) is infinitely differentiable with respect toand we
have the estimates (2.25) for all of its derivatives with respect ito the L, norm. The
inequalities (2.26) are proved quite similarly. We note also #{at ) = 0 for ¢ < 0.

As a direct consequence of this corollary we have the following assertion.

Corollary 2.3. The problem (1.1)—(1.3) is severely ill-posed.
To deal with the Cauchy problem (1.13) we need the following result.
Lemma 2.2. For the problem
iE13(x. £) = a(0UP (x, €) = b3, (x. ) — c@ud@.£)  x€(0.1).6 R
30.6)=0  ud1LE=hE)  EeR
there exists a constamig such that
(L )] < e OVEIR| £ (g)). (2.28)

(2.27)
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Proof. Takingy = A(x) as in (2.6), the functiod as in (2.7) and performing the transform

wl(y, £) = ud(x, s)exp(i /yd(s) ds) (2.29)
0
in the problem (2.27), we get
wi, (v, ) = [g(») +i€]w'(y, &) ye[0,AD],§ eR
wh(0,£) =0 £eR (2.30)
wi(A(D), &) + Cwl(AD), &) = ci7h(§) & €R.

Heregq(y) is defined as in (2.14)X = —d(A(1))/2, c17 = +/a(D) exp(§ SO d(s) ds).

As we have quoted in the proof of lemma 2.1, the equath;l'g(y,g) = [q(y) +

i£]wl(y, &) has two fundamental solutions™ andw~ which, for sufficiently larges, have
the representations (2.17) and (2.18).
Set

w"‘(O, ‘§) w_(09 é)
WAL, §) + Cut (A, &) wy (AD), &) + Cuw (AL, &) |’

Elementary calculations give

w™ (3, 5w (0,8 —w'(y, Hw (0,§)
D)

DEé) =

wh(y, &) = c17h (€).

Since

h(g) = v (L &) F (&)

and w* have the representations (2.17) and (2.18), by the reasonings in the proof of
lemma 2.1, we can prove that férlarge enough there exists a constagt such that

3L, £)| < crge *DVE2| £ ()]

As in remark 2.1 we see that there is another constantggaguch that the last inequality
is valid for all £. The lemma is proved.

3. Stability results

In this section we shall deliver a stability estimate of théldér type for the sideways
parabolic equation in the quarter plane (1.1)-(1.3) and prove that we can split it into the
two Cauchy problems (1.10) and (1.11) as well as deduce it to the problem (1.13).

Theorem 3.1.Let u be a solution of the problem (1.1)—(1.3) such tha&0, ) = f <
L»(0, 00). Suppose that the problem

a(xX)vee + b(x)v, +c(x)v =0 O<x <o (3.2)
v(0)=0 v(x) is bounded ag — oo 3.2)

has a unique solution. Then there exist constantsC, which are depending only on the
coefficientsu(x), b(x), c(x) such that, forx € [0, 1],

lux, )l < Caligll + Coll fIIF AN/ AD] g AC/AD, (3.3)
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Proof. Sincei(x, &) = v(x, s)f(f;') and|v(l, £)| # O (corollary 2.1),

~ 1

f&) = u(1,g)g(é)'
Thus,

. BRICEIN

u(x, &) = v(l’s)g(é)-
Hence

2 _ < lv(x, &) 2 a 2
flae x, )l _/_oo‘v(l,g)‘ |g(&)| dg

= / +/ = A1+ Az,
[§1<é0 1&1=&0

Here&y is the constant in lemma 2.1.
In virtue of remark 2.1 and (2.22),

AL :/ v(x, £)
HES

v(l, §)
Further, by Hlder’s inequality,

A2=/ v(x, §)
g5 | V(1. 6)

< () / e ACIVZE| f(£) 2 e
1&1=>&0

2
N c2
‘ 18(&)%dg < angnz = Cilgl?

2
)2 de = / (e, )17 ()2 de
[&1=>&0

2 — V2 r 2A(x 7 2(1- 1
= (c2) e AM) \5\|f(g:)| A(x)/A( )|f(§)| (1-Ax)/A(1) d¢
[&1>0

. A)/AD) .
< (cz)2<[s . eA(l’mlf(S)lsz) (A . /()1 dg

2 2A Al 2(1-A Al
< (c2)?||g|[PAW/AD ) f2A-A/ADD,

)1—A<x>/A(1>

Thus,
lu(x, )1 < (CD2HgI? + ()|l P4 AD | f A AR/ADY,
The inequality (3.3) follows immediately. The theorem is proved.

Theorem 3.2.The Cauchy problems (1.10) and (1.11) have unique solutions wp=tc0.
Thus, we can split the Cauchy problem (1.9) into the two Cauchy problems (1.10) and (1.11).

Proof. We associate the Cauchy problem (1.10) with the Cauchy problem

a(x)vl (x, &) + bx)vi(x, &) + c()vi(x, &) = igvi(x, £) xe(0,1),eR (3.4)
v, =1 vi(l, &) =0. (3.5)

From lemma 2.2 of Knabner and Vessella [9], there exist constagts,o and c;1 such
that

Wi(x, )] < cr0etWVEIR (3.6)
W(x, &)] < cooy/|E[AOVEI 3.7)

Wl (x, £)] < calE|etOVEI (3.8)
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with

Ao = [ -
X) .= Epye———
0 Ja(ld —s)
Taking lemma 2.1, corollary 2.1 and the fact thigtl) = A(0), A(x) < A(0)forO<x < 1
into account, we have

||L71<x,~>||2=f |v1(x,s)|2|§(s>|2d§</ [, ©)1v(L, £)12 £ (&)1 dg

< (c1502)? f &IV g ADVZEL| f(2) 2 de

2
< el fI°.

Analogously, we can prove thé@x(x, ) and Lﬁxx(x, -) belong toL,(R) for all x € [0, 1].
For the Cauchy problem (1.11) we associate it with the Cauchy problem

avﬁx(x,é)+bvf(x,$)+cv2(x,§) =i&v?(x, &) x€(0,1),seR 3.9
v?(1,€) =0 v3(1,6) =1 (3.10)

Following the method of proving lemma 2.2 of Knabner and Vessella [9], we see that there
exist constants,s, co4 andcys such that, forg| > &,

02(x, £)] < cony/[E] OVEIR2 (3.11)
[2(x, £)] < cogeWVEIR (3.12)
02, (x, §)| < cosy/[EIAOVEI2, (3.13)

The assertion of the theorem for the Cauchy problem (1.11) is now straightforward, in virtue
of lemma 2.1.

Theorem 3.3. The Cauchy problem (1.13) has a unique solution up te= 0. Thus, we
can deduce the Cauchy problem (1.9) into the Cauchy problem (1.13) with the help of the
boundary value problem (1.12).

The proof of this theorem follows immediately from lemma 2.2 and the proof of the
first part of theorem 3.2.

In [3, 5, 6] a mollification method has been suggested for solving the Cauchy problems
(2.10), (1.11) and (1.13) in a stable way. It is worth noting that if we split the Cauchy
problem (1.9) into the two Cauchy problems (1.10) and (1.11), then we have to solve two
ill-posed problems. In doing so, we have to take care that

00 ) 1/2
||u1<0,->||:</ |v1(o,s>|2|v<1,5)|2|f|2ds> < ol £l

and

o) 1/2
le?(0, )l = (/ 10?0, &)[?Jv. (1, s)|2|f|2ds) < ezl f1-
Thus, we have upper bounds fiw*(0, -)|| and [|«2(0, -)||, if the bound for| f|| is given.
Although these bounds are not explicitly found (as the constagtand cp7 are generally
not known), the mollification method in [3, 5, 6] is applicable to the problems (1.10) and
(1.12).

The approach of solving (1.12) and then (1.13) is preferential, since we have to solve
only one ill-posed problem, furthermore for the problem (1.13) we Haw¢0, )| = || 1.
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The mollification method, stable marching difference schemes for the Cauchy problems
(1.10), (1.11) and (1.13) as well as numerical experiments for them have been given in
[3, 5, 6].
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