
Inverse Problems13 (1997) 297–309. Printed in the UK PII: S0266-5611(97)77515-4

On a sideways parabolic equation

Dinh Nho H̀ao†‡ and H-J Reinhardt‡
† Hanoi Institute of Mathematics, PO Box 631 Bo Ho, 10 000 Hanoi, Vietnam
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Abstract. The sideways parabolic equation in the quarter plane
ut = a(x)uxx + b(x)ux + c(x)u x ∈ (0,∞), t ∈ (0,∞)
u(1, t) = g(t) t ∈ (0,∞)
u(x, 0) = 0 x ∈ (0,∞)

is considered. This is a model of a problem where one wants to determine the temperature on
both sides of a thick wall, but one side is inaccessible to measurements. This problem is well
known to be severely ill-posed: a small perturbation in the data,g, may cause dramatically
large errors in the solution. The results available in the literature are mainly devoted to the case
of constant coefficients, where one can find an explicit representation for the solution of the
problem. In this paper a stability estimate of the Hölder type for the solution of this general
problem is established, it is also shown how to apply the mollification method recently proposed
by Dinh Nho H́ao to solve the problem in a stable way.

1. Introduction

In several engineering contexts there is sometimes a need to determine the temperature on
both sides of a thick wall, but one side is inaccessible to measurements (see, e.g. [1, 12].
This problem occasionally leads to the following sideways parabolic equation in the quarter
plane

ut = a(x)uxx + b(x)ux + c(x)u x ∈ (0,∞), t ∈ (0,∞) (1.1)

u(1, t) = g(t) t ∈ (0,∞) (1.2)

u(x, 0) = 0 x ∈ (0,∞). (1.3)

Herea, b andc are given functions such that for someλ,3 > 0

λ 6 a(x) 6 3 x ∈ (0,∞) (1.4)

and

c(x) 6 0. (1.5)

For simplicity, we suppose that

a(·) ∈ C2(0,∞) b(·) ∈ C1(0,∞) c(·) ∈ C(0,∞). (1.6)

Furthermore, throughout the paper, we suppose

g ∈ L2(0,∞) (1.7)

which is considered as the measured data in the above-mentioned model.
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The problem (1.1)–(1.3) is well known to beseverely ill-posed: a small perturbation in
the datag may cause dramatically large errors in the solutionu(x, t) for x ∈ [0, 1) (see, e.g.
[12] or corollary 2.3 below). There are several methods for solving it in a stable way (see,
e.g. our survey in [5], or [7]); however, they are mainly devoted to the case of constant
coefficients, as for this one can find an explicit representation for the solution. The aim
of this paper is to show how to apply the mollification method suggested in [3, 5, 6] to the
general problem. To do this we first solve thewell-posedproblem

ut = a(x)uxx + b(x)ux + c(x)u x ∈ (1,∞), t ∈ (0,∞)
u(1, t) = g(t) t ∈ (0,∞)
u(x, 0) = 0 x ∈ (1,∞)

(1.8)

to find h(t) := ux(1, t). As a result we get the Cauchy problem

ut = a(x)uxx + b(x)ux + c(x)u x ∈ (0, 1), t ∈ (0,∞)
u(1, t) = g(t) t ∈ (0,∞)
ux(1, t) = h(t) t ∈ (0,∞)
u(x, 0) = 0 x ∈ [0, 1].

(1.9)

The next step is to solve this Cauchy problem in a stable way. The crucial point is how to
do it when the results in [9, 3, 5, 6] allow us to work only with the case when eitherh = 0
or g = 0. One immediately has the idea that either one should split this Cauchy problem
into two independent Cauchy problems

u1
t = a(x)u1

xx + b(x)u1
x + c(x)u1 x ∈ (0, 1), t ∈ (0,∞)

u1(1, t) = g(t) t ∈ (0,∞)
u1
x(1, t) = 0 t ∈ (0,∞)
u1(x, 0) = 0 x ∈ [0, 1]

(1.10)

and

u2
t = a(x)u2

xx + b(x)u2
x + c(x)u2 x ∈ (0, 1), t ∈ (0,∞)

u2(1, t) = 0 t ∈ (0,∞)
u2
x(1, t) = h(t) t ∈ (0,∞)
u2(x, 0) = 0 x ∈ [0, 1]

(1.11)

and solve them by the technique given in [3, 5, 6] and then takeu = u1+u2, or one should
solve the well-posed problem

u3
t = a(x)u3

xx + b(x)u3
x + c(x)u3 x ∈ (0, 1), t ∈ (0,∞)

u3(0, t) = 0 t ∈ (0,∞)
u3
x(1, t) = h(t) t ∈ (0,∞)
u3(x, 0) = 0 x ∈ [0, 1]

(1.12)

and then solve the Cauchy problem

u4
t = a(x)u4

xx + b(x)u4
x + c(x)u4 x ∈ (0, 1), t ∈ (0,∞)

u4(1, t) = g(t)− u3(1, t) t ∈ (0,∞)
u4
x(1, t) = 0 t ∈ (0,∞)
u4(x, 0) = 0 x ∈ [0, 1]

(1.13)
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by the technique given in [3, 5, 6] and takeu = u3+ u4.
The second approach is preferential as we have to solve only one ill-posed Cauchy

problem. A matter of fact is:can we do the just-mentioned procedures?It seems to us
that the researchers in the field did not take this question into consideration. First, we note
that, in the Cauchy problem (1.9), the Cauchy datag and h cannot be arbitrarily given.
For example, Holmgren [8] has proved that a necessary and sufficient condition for the
existence of a solution of the problem

uxx = ut 0< x < 1, 0< t < T

u(0, t) = g(t) 0< t < T

ux(0, t) = h(t) 0< t < T

(1.14)

is that

θ(t) = h(t)+ 1√
π

∫ t

0

g′(τ ) dτ√
t − τ

be a function of a Holmgren class 2. A function,θ(t), defined in(α, β) is said to belong to
a Holmgren class 2 if it belongs toC∞(α, β), and there exist positive numbersM > 0 ands
such that|θ(n)(t)| 6 M(2n)!s2n, ∀n ∈ {0, 1, 2, . . .}. Secondly, in [4–6] we have also proved
that if h = 0, theng must be infinitely differentiable and‖g(n)‖∗ 6 c(2n)!s2n, n = 0, 1, . . .,
wherec ands are some positive constants and‖ · ‖∗ is a defined norm. The same result is
also valid forh if g = 0. Thus, ifg (or h) does not belong to the above-mentioned class,
then we cannot split our Cauchy problem (1.9) (or the problem (1.14)) into two independent
Cauchy problems (1.10) and (1.11), as they have no solution! Furthermore, in general, if
g (or h) belongs to the above-described class it guarantees onlya local solution of our
Cauchy problem (see [4–6]). We note also that here we are working withnon-analytic
Cauchy problemsfor parabolic equations. Thus, in order to split the Cauchy problem (1.9)
into two independent Cauchy problems (1.10) and (1.11) or to deduce it to the Cauchy
problem (1.13) we have to prove thatg andh are so smooth such that the Cauchy problems
(1.10), (1.11) and (1.13) haveglobal solutionsup to x = 0. The main contribution of this
paper is to prove this fact as well as to deliver a stability estimate of the Höder type for the
solution of the problem (1.1)–(1.3), although we do not claim any originality of our idea.

In this paper we shall use some estimates for the asymptotic behaviour of solutions of
a second-order linear ordinary differential equation depending on a parameter in a finite
interval given by Tamarkin [13], Coddington and Levinson [2], in the half-axis given by
Naimark [10] as well as several estimates of Knabner and Vessella [9].

In the next section we establish some regularity properties for the boundary value
problems for parabolic equations in the quarter plane. The last section is devoted to
the problem (1.1)–(1.3): a stability estimate, splitting the Cauchy problem (1.9) to the
Cauchy problems (1.10), (1.11) and (1.13). Since the mollification method, stable marching
difference schemes for the Cauchy problems (1.10), (1.11) and (1.13) as well as numerical
experiments for them are given in [5, 6] we do not repeat them in this paper.

Throughout the paper all constantsc1, c2, . . . , c27, C1, C2 are tacitly assumed to be
positive.

2. Direct problems

Consider the boundary-value problem for our parabolic equation in the quarter plane

ut = a(x)uxx + b(x)ux + c(x)u x ∈ (0,∞), t ∈ (0,∞) (2.1)
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u(0, t) = f (t) t ∈ (0,∞) (2.2)

u(x, 0) = 0 x ∈ (0,∞). (2.3)

We assume

f ∈ L2(0,∞). (2.4)

As a solution of the problem (2.1)–(2.3) we understand a functionu(x, t) satisfying (2.1) and
(2.3) in the classical sense; for every fixedx ∈ [0,∞), the functionu(x, ·) and its derivatives
ux(x, ·), uxx(x, ·) belong toL2(0,∞) and limx→0 ‖u(x, ·) − f ‖L2(0,∞) = 0. Furthermore,
for the uniqueness of the solution, we require that‖u(x, ·)‖L2(0,∞) be bounded.

Since the functions oft in our consideration are defined only in [0,∞), in order to
apply the Fourier transform technique to them we extend their definitions to the whole real
t-axis by defining them to be zero fort < 0. Further, let

ŵ(ξ) = 1√
2π

∫ ∞
−∞

w(t)e−iξ t dt

denote the Fourier transform ofw, and‖ · ‖ denote‖ · ‖L2(R).
We associate (2.1)–(2.3) with the following boundary value problem for the ordinary

differential equation

iξv(x, ξ) = a(x)vxx + b(x)vx + c(x)v x ∈ (0,∞), ξ ∈ R
v(0, ξ) = 1 ξ ∈ R
lim
x→∞ v(x, ξ) = 0 ξ 6= 0

(2.5)

for ξ = 0 we requirev(x, 0) be bounded asx tends to∞.
We note that|v(x, ξ)| 6 1 for ξ 6= 0. In fact, setting

y := A(x) =
∫ x

0

ds√
a(s)

(2.6)

we see that the functioñv(y, ξ) := v(x, ξ) satisfies the system

iξ ṽ = ṽyy + d(y)ṽy + c̃(y)ṽ ξ ∈ R, y ∈ (0,∞)
ṽ(0, ξ) = 1 ξ ∈ R
lim
y→∞ ṽ(y, ξ) = 0 ξ 6= 0

where

c̃(y) := c(x) d(y) := [(b − ax/2)/
√
a](x). (2.7)

Taking the conditions (1.4)–(1.6) into account and applying an easily modified version
of the maximum principle [11, theorem 3, p 6] for the infinite half-axis [0,∞) to |ṽ(y, ξ)|2,
we see that|ṽ(y, ξ)| 6 1 for ξ 6= 0. Thus,|v(x, ξ)| is uniformly bounded.

Suppose that the problem (2.1)–(2.3) has a solutionu. Then

u(x, t) = 1√
2π

∫ ∞
−∞

eiξ t v(x, ξ)f̂ (ξ) dξ for x ∈ (0,∞). (2.8)

In fact, for a functionh defined on [0,∞) we denote its Laplace transform byH , and the
inverse Laplace transform ofH by L−1{H } (see [14, ch 2]). Taking the Laplace transform
of both sides of (2.1) and (2.2), having the condition (2.3) in mind, we get

sU(x, s) = a(x)Uxx + b(x)Ux + c(x)U x ∈ (0,∞), s ∈ C
U(0, s) = F(s) x ∈ (0,∞), s ∈ C. (2.9)
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Furthermore, in order to have a unique solution, according to the maximum principle just
mentioned above, we require that limx→∞ |U(x, s)| = 0, if Re s > 0. If a solution of the
problem (2.1)–(2.3) exists, then

u(x, t) = L−1{U}(x, t).
According to theorem 7.3 in [14, p 66], we haveL−1{U}(x, t) = 0 for t < 0 and
L−1{U}(x, 0) = u(x,+0)/2 = 0. On the other hand, for a functionw which vanishes
on the negativet-axis, the Fourier and Laplace transforms are related via

W(iξ) =
√

2πŵ(ξ) ξ ∈ R.
Thus, from (2.9), on puttings = iξ ,

û(x, ξ) = v(x, ξ)f̂ (ξ).
Hence the equality (2.8).

We see that thisu satisfies the condition (2.3). In fact,

u(x, t) = lim
T→∞

1√
2π

∫ T

−T
eiξ t û(x, ξ)dξ

= lim
T→∞

1

2π

∫ T

−T
eiξ tU(x, iξ)dξ

= lim
T→∞

1

2πi

∫ iT

−iT
estU(x, s)ds

= L−1{U}(x, t)
which has just been proved to satisfy the condition (2.3). For further argument, the reader
is referred to [9, p 580].

We note that since|v(x, ξ)| is uniformly bounded, the solution of the problem (2.1)–(2.3)
is stable inL2-norm.

Lemma 2.1. There exist constantsck, k = 1, 2, 3, 4, such that, forx ∈ [0, 1] and |ξ | large
enough, say|ξ | > ξ0,

c1e−A(x)
√|ξ |/2 6 |v(x, ξ)| 6 c2e−A(x)

√|ξ |/2, (2.10)

c3

√
|ξ |e−A(x)

√|ξ |/2 6 |vx(x, ξ)| 6 c4

√
|ξ |e−A(x)

√|ξ |/2. (2.11)

Proof. Takingy = A(x) as in (2.6), the functiond as in (2.7) and performing the transform
[9]

w(y, ξ) := v(x, ξ)exp

(
1
2

∫ y

0
d(s) ds

)
(2.12)

in the problem (2.5), we get

wyy(y, ξ) = [q(y)+ iξ ]w(y, ξ) y ∈ [0,∞), ξ ∈ R
w(0, ξ) = 1 ξ ∈ R. (2.13)

Here,

q(y) := 1
16(−4a′′ + 8b′ + 3a′2/a − 8ba′/a + 4b2/a − 16c)(x). (2.14)

Let l be a fixed number greater than 2A(1). On the interval [0, l], the functionw(y, ξ)
satisfies the boundary-value problem

wyy(y, ξ)− [q(y)+ iξ ]w(y, ξ) = 0 y ∈ (0, l), ξ ∈ R (2.15)

w(0, ξ) = 1 w(l, ξ) = w(l, ξ) ξ ∈ R. (2.16)
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We note that, since|v(x, ξ)| 6 1 for ξ 6= 0,

|w(l, ξ)| 6 exp

(
1
2

∫ l

0
| d(s)| ds

)
:= e(l) for ξ 6= 0.

Following [13] and [2, p 308] the equation (2.15) has two fundamental solutionsw+ and
w− which, for sufficiently largeξ , have the following representations

w±(y, ξ) = e±y
√

iξ

{
1+ [±Q(y)]√

iξ

}
(2.17)

w±y (y, ξ) = ±
√

iξe±y
√

iξ

{
1+ [±Q(y)]√

iξ

}
(2.18)

where √
iξ =

{√
|ξ |/2(1+ i) ξ > 0√
|ξ |/2(1− i) ξ < 0

and

Q(y) = 1
2

∫ y

0
q(τ) dτ.

By [α] we understand Birkhoff’s expression [α] = α + E/ξ , whereE = E(y, ξ) is a
continuous function in both variables and uniformly bounded for largeξ .

Set

1(l, ξ) =
∣∣∣∣w+(0, ξ) w−(0, ξ)
w+(l, ξ) w−(l, ξ)

∣∣∣∣
11(l, y, ξ) =

∣∣∣∣w+(y, ξ) w−(y, ξ)
w+(l, ξ) w−(l, ξ)

∣∣∣∣
12(l, y, ξ) = −

∣∣∣∣w+(y, ξ) w−(y, ξ)
w+(0, ξ) w−(0, ξ)

∣∣∣∣ .
We have

w(y, ξ) = 11(l, y, ξ)

1(l, ξ)
+ w(l, ξ)12(l, y, ξ)

1(l, ξ)
.

Now we estimate1(l, ξ),11(l, y, ξ) and12(l, x, ξ). From (2.17),

1(l, ξ) = w+(0, ξ)w−(l, ξ)− w+(l, ξ)w−(0, ξ) = e−l
√

iξ

(
1+ [Q(0)]√

iξ

)(
1+ [−Q(l)]√

iξ

)
−el
√

iξ

(
1+ [Q(l)]√

iξ

)(
1+ [−Q(0)]√

iξ

)
= el

√
iξ

{
e−2l

√
iξ

(
1+ [Q(0)]√

iξ

)
×
(

1+ [−Q(l)]√
iξ

)
−
(

1+ [Q(l)]√
iξ

)(
1+ [−Q(0)]√

iξ

)}
.

For ξ large enough, say|ξ | > ξ1, there exists a constantc5 such that∣∣∣∣{e−2l
√

iξ

(
1+ [Q(0)]√

iξ

)(
1+ [−Q(l)]√

iξ

)
−
(

1+ [Q(l)]√
iξ

)(
1+ [−Q(0)]√

iξ

)}∣∣∣∣
6
∣∣∣∣e−2l

√
iξ

(
1+ [Q(0)]√

iξ

)(
1+ [−Q(l)]√

iξ

)∣∣∣∣
+
∣∣∣∣(1+ [Q(l)]√

iξ

)(
1+ [−Q(0)]√

iξ

)∣∣∣∣ 6 c5
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since|e−2l
√

iξ | 6 e−l
√

2ξ1.
Analogously, there exists a constantc6 such that forξ large enough, say|ξ | > ξ2,∣∣∣∣{e−2l
√

iξ

(
1+ [Q(0)]√

iξ

)(
1+ [−Q(l)]√

iξ

)
−
(

1+ [Q(l)]√
iξ

)(
1+ [−Q(0)]√

iξ

)}∣∣∣∣
>
∣∣∣∣∣∣∣∣e−2l

√
iξ

(
1+ [Q(0)]√

iξ

)(
1+ [−Q(l)]√

iξ

)∣∣∣∣
−
∣∣∣∣(1+ [Q(l)]√

iξ

)(
1+ [−Q(0)]√

iξ

)∣∣∣∣∣∣∣∣ > c6

since|e−2l
√

iξ | = e−l
√

2|ξ | is small if ξ is large enough.
Thus, there exist constantsc5 andc6 such that, for|ξ | > max{ξ1, ξ2},

c6el
√|ξ |/2 6 |1(l, ξ)| 6 c5el

√|ξ |/2. (2.19)

Quite analogously, there exist constantsc7, c8, c9, c10 such that forξ large enough

c7e(l−y)
√|ξ |/2 6 |11(l, y, ξ)| 6 c8e(l−y)

√|ξ |/2, (2.20)

c9ey
√|ξ |/2 6 |12(l, y, ξ)| 6 c10ey

√|ξ |/2. (2.21)

From the last three inequalities we see forξ large enough there exists a constantc11 such
that, fory ∈ [0, A(1)],

|w(y, ξ)| 6
∣∣∣∣11(l, y, ξ)

1(l, ξ)

∣∣∣∣+ |w(l, ξ)| ∣∣∣∣12(l, y, ξ)

1(l, ξ)

∣∣∣∣
6 c8

c6
e−y
√|ξ |/2+ c10

c6
e(l)e(y−l)

√|ξ |/2

6 c11e−y
√|ξ |/2.

Furthermore, forξ large enough there also exists a constantc12 such that, fory ∈ [0, A(1)],

|w(y, ξ)| >
∣∣∣∣∣∣∣∣11(l, y, ξ)

1(l, ξ)

∣∣∣∣− |w(l, ξ)| ∣∣∣∣12(l, y, ξ)

1(l, ξ)

∣∣∣∣∣∣∣∣
>
∣∣∣∣c7

c5
e−y
√|ξ |/2− c10

c6
e(l)e(y−l)

√|ξ |/2
∣∣∣∣

=
∣∣∣∣c7

c5
− c10

c6
e(l)e(2y−l)

√|ξ |/2
∣∣∣∣ e−y

√|ξ |/2

> c12e−y
√|ξ |/2.

Thus, there exist constantsc11 andc12 such that, forξ large enough andy ∈ [0, A(1)],

c11e−y
√|ξ |/2 6 |w(y, ξ)| 6 c12e−y

√|ξ |/2.

Taking the transform (2.12) into account and noting thaty ∈ [0, A(1)], we thus prove the
inequalities (2.10) of the lemma. The inequalities (2.11) are proved quite similarly.

Corollary 2.1. If the boundary value problem

a(x)vxx(x)+ b(x)vx(x)+ c(x)v(x) = 0 0< x <∞
v(0) = 1 v(x) is bounded asx →∞.

has a unique solution, then there exist constantsc̄1 and c̄2 such that

c̄1e−A(1)
√|ξ |/2 6 |v(1, ξ)| 6 c̄2e−A(1)

√|ξ |/2 ∀ξ ∈ R. (2.22)
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Proof. First, we note thatv(1, ξ) 6= 0 for ξ 6= 0, otherwise the Sturm–Liouville problem

a(x)vxx + b(x)vx + c(x)v = λv x ∈ (0, 1)

v(0, λ) = 1 v(1, λ) = 0

has imaginary eigenvalues.
For ξ = 0, we have the boundary value problem

a(x)vxx(x, 0)+ b(x)vx(x, 0)+ c(x)v(x, 0) = 0 0< x <∞
v(0, 0) = 1 |v(x, 0)| is bounded asx →∞.

We see thatv(1, 0) 6= 0. In fact, if v(1, 0) = 0, thenv(x, 0) = 0 for x > 1, since this
problem is assumed to have a unique solution. Thus,v(l, 0) = 0, vx(l, 0) = 0 for anyl > 1.
The Cauchy problem

a(x)vxx(x, 0)+ b(x)vx(x, 0)+ c(x)v(x, 0) = 0 0< x < l

v(l, 0) = 0 vx(l, 0) = 0

has a unique solutionv(x, 0) ≡ 0. It is a contradiction, sincev(0, 0) = 1. Thus,v(1, 0) 6= 0.
Consequently,|v(1, ξ)| > 0 for |ξ | 6 ξ0, whereξ0 is the constant in lemma 2.1. The function
|v(1, ξ)| is continuous in the closed interval [−ξ0, ξ0] and therefore attains its minimum at
a point ξ̄ in this interval. Hence,|v(1, ξ)| > |v(1, ξ̄ )| > 0. Thus, there exists a constantc̄1

1
such that, for|ξ | 6 ξ0,

c̄1
1e−A(1)

√|ξ |/2 6 |v(1, ξ)|.
Combining this inequality with the first one in (2.10), we see that there exists a constantc̄1

such that the first inequality in (2.22) is valid. The right-hand side inequality in (2.22) is
trivial.

Remark 2.1. From the maximum principle we see immediately that, forx ∈ [0, 1], the
right-hand side inequalities in (2.10) and (2.11) are valid for allξ ∈ R with other constants
c2 andc4. It follows also that forx ∈ [0, 1] there exists a constantc13 such that

|vxx(x, ξ)| 6 c13|ξ |e−A(x)
√|ξ |/2 ∀ξ ∈ R.

Remark 2.2. If the functiond(·) is not positive and the functionq is summable in every
finite subinterval(0, l),0 < l < ∞, then we can very simply prove lemma 2.1. In fact, if
d 6 0, then limy→∞w(y, ξ) = 0 for ξ 6= 0, from theorem 2.5.1 in [10] we have asξ →∞

w(y, ξ) = e−y
√

iξ

[
1+O

(
1√
iξ

)]
(2.23)

wy(y, ξ) =
√

iξe−y
√

iξ

[
1+O

(
1√
iξ

)]
(2.24)

uniformly with respect toy ∈ [0,∞). Hence the lemma.

Corollary 2.2. For any fixedx > 0, the operators

f ∈ L2(0,∞)→ u(x, ·) ∈ L2(0,∞)
and

f ∈ L2(0,∞)→ ux(x, ·) ∈ L2(0,∞)
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are infinitely smoothing. Furthermore there exist nonnegative constantsc14 andc15 such that∥∥∥∥∂nu(x, ·)∂tn

∥∥∥∥ 6 c14(2n)!

( √
2

A(x)

)2n

(2.25)

∥∥∥∥∂n+1u(x, ·)
∂x∂tn

∥∥∥∥ 6 c15(2n+ 1)!

( √
2

A(x)

)2n

∀n = 0, 1, 2, . . . . (2.26)

Proof. For anyx > 0 andn = 1, 2, . . ., we have∥∥∥∥∂nu(x, ·)∂tn

∥∥∥∥ = (∫ ∞−∞ |(iξ)nû(x, ξ)|2 dξ

)1/2

=
(∫ ∞
−∞
|(iξ)nv(x, ξ)f̂ (ξ)|2 dξ

)1/2

6 c2

(∫ ∞
−∞
|ξ |2ne−A(x)

√
2|ξ ||f̂ (ξ)|2 dξ

)1/2

6 c2 sup
ξ∈R
(|ξ |ne−A(x)

√|ξ |/2)‖f ‖

6 c2

(
2n
√

2

eA(x)

)2n

‖f ‖

6 c2
e2n(2n)!√

4πn

( √
2

eA(x)

)2n

‖f ‖

6 c2
(2n)!

2
√
π

( √
2

A(x)

)2n

‖f ‖.

Here we have used the following inequalities:

ype−cy 6 (p/ec)p for any y > 0, c > 0, p > 0

and

kk 6 ek√
2πk

k!.

Setting

c14 := c2

2
√
π
‖f ‖

we get the inequality (2.25).
Thus, forx > 0 the functionu(x, t) is infinitely differentiable with respect tot and we

have the estimates (2.25) for all of its derivatives with respect tot in the L2 norm. The
inequalities (2.26) are proved quite similarly. We note also thatu(x, t) = 0 for t 6 0.

As a direct consequence of this corollary we have the following assertion.

Corollary 2.3. The problem (1.1)–(1.3) is severely ill-posed.

To deal with the Cauchy problem (1.13) we need the following result.

Lemma 2.2. For the problem

iξ û3(x, ξ) = a(x)û3
xx(x, ξ)− b(x)û3

x(x, ξ)− c(x)û3(x, ξ) x ∈ (0, 1), ξ ∈ R
û3(0, ξ) = 0 û3

x(1, ξ) = ĥ(ξ) ξ ∈ R.
(2.27)

there exists a constantc16 such that

|û3(1, ξ)| 6 c16e−A(1)
√|ξ |/2|f̂ (ξ)|. (2.28)
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Proof. Takingy = A(x) as in (2.6), the functiond as in (2.7) and performing the transform

w1(y, ξ) := û3(x, ξ)exp

(
1
2

∫ y

0
d(s) ds

)
(2.29)

in the problem (2.27), we get

w1
yy(y, ξ) = [q(y)+ iξ ]w1(y, ξ) y ∈ [0, A(1)], ξ ∈ R

w1(0, ξ) = 0 ξ ∈ R
w1
y(A(1), ξ)+ Cw1(A(1), ξ) = c17ĥ(ξ) ξ ∈ R.

(2.30)

Hereq(y) is defined as in (2.14),C = −d(A(1))/2, c17 =
√
a(1) exp

(
1
2

∫ A(1)
0 d(s) ds

)
.

As we have quoted in the proof of lemma 2.1, the equationw1
yy(y, ξ) = [q(y) +

iξ ]w1(y, ξ) has two fundamental solutionsw+ andw− which, for sufficiently largeξ , have
the representations (2.17) and (2.18).

Set

D(ξ) =
∣∣∣∣ w+(0, ξ) w−(0, ξ)
w+y (A(1), ξ)+ Cw+(A(1), ξ) w−y (A(1), ξ)+ Cw−(A(1), ξ)

∣∣∣∣ .
Elementary calculations give

w1(y, ξ) = w−(y, ξ)w+(0, ξ)− w+(y, ξ)w−(0, ξ)
D(ξ) c17ĥ(ξ).

Since

ĥ(ξ) = vx(1, ξ)f̂ (ξ)
and w± have the representations (2.17) and (2.18), by the reasonings in the proof of
lemma 2.1, we can prove that forξ large enough there exists a constantc18 such that

|û3(1, ξ)| 6 c18e−A(1)
√|ξ |/2|f̂ (ξ)|.

As in remark 2.1 we see that there is another constant, sayc16, such that the last inequality
is valid for all ξ . The lemma is proved.

3. Stability results

In this section we shall deliver a stability estimate of the Hölder type for the sideways
parabolic equation in the quarter plane (1.1)–(1.3) and prove that we can split it into the
two Cauchy problems (1.10) and (1.11) as well as deduce it to the problem (1.13).

Theorem 3.1.Let u be a solution of the problem (1.1)–(1.3) such thatu(0, ·) := f ∈
L2(0,∞). Suppose that the problem

a(x)vxx + b(x)vx + c(x)v = 0 0< x <∞ (3.1)

v(0) = 0 v(x) is bounded asx →∞ (3.2)

has a unique solution. Then there exist constantsC1, C2 which are depending only on the
coefficientsa(x), b(x), c(x) such that, forx ∈ [0, 1],

‖u(x, ·)‖ 6 C1‖g‖ + C2‖f ‖1−A(x)/A(1)‖g‖A(x)/A(1). (3.3)
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Proof. Sinceû(x, ξ) = v(x, ξ)f̂ (ξ) and |v(1, ξ)| 6= 0 (corollary 2.1),

f̂ (ξ) = 1

v(1, ξ)
ĝ(ξ).

Thus,

û(x, ξ) = v(x, ξ)

v(1, ξ)
ĝ(ξ).

Hence

‖u(x, ·)‖2 =
∫ ∞
−∞

∣∣∣∣v(x, ξ)v(1, ξ)

∣∣∣∣2 |ĝ(ξ)|2 dξ

=
∫
|ξ |6ξ0

+
∫
|ξ |>ξ0

:= A1+ A2.

Hereξ0 is the constant in lemma 2.1.
In virtue of remark 2.1 and (2.22),

A1 =
∫
|ξ |6ξ0

∣∣∣∣v(x, ξ)v(1, ξ)

∣∣∣∣2 |ĝ(ξ)|2 dξ 6 c2

c̄1
‖g‖2 := C2

1‖g‖2.

Further, by Ḧolder’s inequality,

A2 =
∫
|ξ |>ξ0

∣∣∣∣v(x, ξ)v(1, ξ)

∣∣∣∣2 |ĝ(ξ)|2 dξ =
∫
|ξ |>ξ0

|v(x, ξ)|2|f̂ (ξ)|2 dξ

6 (c2)
2
∫
|ξ |>ξ0

e−A(x)
√

2|ξ ||f̂ (ξ)|2 dξ

= (c2)
2
∫
|ξ |>ξ0

e−A(x)
√

2|ξ ||f̂ (ξ)|2A(x)/A(1)|f̂ (ξ)|2(1−A(x)/A(1)) dξ

6 (c2)
2

(∫
|ξ |>ξ0

e−A(1)
√

2|ξ ||f̂ (ξ)|2 dξ

)A(x)/A(1)(∫
|ξ |>ξ0

|f̂ (ξ)|2 dξ

)1−A(x)/A(1)

6 (c2)
2‖g‖2A(x)/A(1)‖f ‖2(1−A(x)/A(1)).

Thus,

‖u(x, ·)‖2 6 (C1)
2‖g‖2+ (c2)

2‖g‖2A(x)/A(1)‖f ‖2(1−A(x)/A(1)).

The inequality (3.3) follows immediately. The theorem is proved.

Theorem 3.2.The Cauchy problems (1.10) and (1.11) have unique solutions up tox = 0.
Thus, we can split the Cauchy problem (1.9) into the two Cauchy problems (1.10) and (1.11).

Proof. We associate the Cauchy problem (1.10) with the Cauchy problem

a(x)v1
xx(x, ξ)+ b(x)v1

x(x, ξ)+ c(x)v1(x, ξ) = iξv1(x, ξ) x ∈ (0, 1), ξ ∈ R (3.4)

v1(1, ξ) = 1 v1
x(1, ξ) = 0. (3.5)

From lemma 2.2 of Knabner and Vessella [9], there exist constantsc19, c20 and c21 such
that

|v1(x, ξ)| 6 c19eĀ(x)
√|ξ |/2 (3.6)

|v1
x(x, ξ)| 6 c20

√
|ξ |eĀ(x)

√|ξ |/2 (3.7)

|v1
xx(x, ξ)| 6 c21|ξ |eĀ(x)

√|ξ |/2 (3.8)
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with

Ā(x) :=
∫ 1−x

0

ds√
a(1− s) .

Taking lemma 2.1, corollary 2.1 and the fact thatA(1) = Ā(0), Ā(x) < Ā(0) for 0< x 6 1
into account, we have

‖û1(x, ·)‖2 =
∫ ∞
−∞
|v1(x, ξ)|2|ĝ(ξ)|2 dξ 6

∫ ∞
−∞
|v1(x, ξ)|2|v(1, ξ)|2|f̂ (ξ)|2 dξ

6 (c19c2)
2
∫ ∞
−∞

eĀ(x)
√

2|ξ |e−A(1)
√

2|ξ ||f̂ (ξ)|2 dξ

6 c22‖f ‖2.

Analogously, we can prove that̂u1
x(x, ·) and û1

xx(x, ·) belong toL2(R) for all x ∈ [0, 1].
For the Cauchy problem (1.11) we associate it with the Cauchy problem

av2
xx(x, ξ)+ bv2

x(x, ξ)+ cv2(x, ξ) = iξv2(x, ξ) x ∈ (0, 1), ξ ∈ R (3.9)

v2(1, ξ) = 0 v2
x(1, ξ) = 1. (3.10)

Following the method of proving lemma 2.2 of Knabner and Vessella [9], we see that there
exist constantsc23, c24 andc25 such that, for|ξ | > ξ̄ ,

|v2(x, ξ)| 6 c23

√
|ξ |−1

eĀ(x)
√|ξ |/2 (3.11)

|v2
x(x, ξ)| 6 c24eĀ(x)

√|ξ |/2 (3.12)

|v2
xx(x, ξ)| 6 c25

√
|ξ |eĀ(x)

√|ξ |/2. (3.13)

The assertion of the theorem for the Cauchy problem (1.11) is now straightforward, in virtue
of lemma 2.1.

Theorem 3.3.The Cauchy problem (1.13) has a unique solution up tox = 0. Thus, we
can deduce the Cauchy problem (1.9) into the Cauchy problem (1.13) with the help of the
boundary value problem (1.12).

The proof of this theorem follows immediately from lemma 2.2 and the proof of the
first part of theorem 3.2.

In [3, 5, 6] a mollification method has been suggested for solving the Cauchy problems
(1.10), (1.11) and (1.13) in a stable way. It is worth noting that if we split the Cauchy
problem (1.9) into the two Cauchy problems (1.10) and (1.11), then we have to solve two
ill-posed problems. In doing so, we have to take care that

‖u1(0, ·)‖ =
(∫ ∞
−∞
|v1(0, ξ)|2|v(1, ξ)|2|f̂ |2 dξ

)1/2

6 c26‖f ‖

and

‖u2(0, ·)‖ =
(∫ ∞
−∞
|v2(0, ξ)|2|vx(1, ξ)|2|f̂ |2 dξ

)1/2

6 c27‖f ‖.

Thus, we have upper bounds for‖u1(0, ·)‖ and‖u2(0, ·)‖, if the bound for‖f ‖ is given.
Although these bounds are not explicitly found (as the constantsc26 andc27 are generally
not known), the mollification method in [3, 5, 6] is applicable to the problems (1.10) and
(1.11).

The approach of solving (1.12) and then (1.13) is preferential, since we have to solve
only one ill-posed problem, furthermore for the problem (1.13) we have‖u4(0, ·)‖ = ‖f ‖.
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The mollification method, stable marching difference schemes for the Cauchy problems
(1.10), (1.11) and (1.13) as well as numerical experiments for them have been given in
[3, 5, 6].
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