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Abstract. The standard five-point difference approximation to the Cauchy problem for Laplace’s
equation satisfies stability estimates—and hence turns out to be a well-posed problem—when a cer-
tain boundedness requirement is fulfilled. The estimates are of logarithmic convexity type. Herewith,
a regularization method will be proposed and associated error bounds can be derived. Moreover, the
error between the given (continuous) Cauchy problem and the difference approximation obtained via
a suitable minimization problem can be estimated by a discretization and a regularization term.
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1. Introduction. In this paper, a numerical method for solving the Cauchy
problem for Laplace’s equation will be proposed and analyzed. As a model problem,
we consider

∆u = 0 in [0, 1]× [0, 1];(1)

u|x=0 = u|x=1 = 0, y ∈ [0, 1];(2)

u|y=0 = f1, x ∈ [0, 1];(3) ∥∥∥∥∂u∂y
∣∣∣∣
y=0

− fε2 |20,(0,1) ≤ ε2,(4)

with a given function f1 and a perturbation fε2 of f2 := ∂u/∂y|y=0. For simplicity, let
f1 = 0. One knows that this problem is conditionally well posed, which means that
the original ill-posed problem becomes well posed if the set of solutions is restricted.
Such a restriction can be ‖u(., 1)‖0,(0,1) ≤M (see [13], [14], [15]) or J(1;u) ≤M with
any one of the functionals J∗, J1, J2 given in [9].

An analysis of numerical methods for the above Cauchy problem can rarely be
found in the literature though a series of papers contains numerical examples (see,
e.g., [1], [3], [2], [4], [5], [6], [8], [9], [10], [11], [12]). Among these, the works of Falk
[5], Falk and Monk [6], and Han [8] contain error estimates and convergence results.

Falk and Monk [6] have proposed a choice of an optimal mesh size. The difference
in the approaches of Falk [5], Falk and Monk [6], and Han [8] lies in the functional to
be miminized. In [5], [6] a defect functional is minimized while in [8] a certain energy
norm is minimized. Contrary to [5], [6], no orders of convergence are proved in [8].
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The present work may be considered as a discrete version of [9], where, similar
to [8], certain energy functionals are mimimized in order to obtain an optimal regu-
larizing approximation. The crucial idea in [9]—and in discrete form here also—is a
certain extension of a three-line theorem for harmonic functions proved by Falk [5].
The numerical example given in [9] demonstrates that the approach may be very well
suited for a numerical approximation as well. It turns out, that analogously to [9],
the five-point difference approximation for the Cauchy problem of Laplace’s equation
fulfills stability estimates of logarithmic type and leads to a regularization method
including error bounds. Moreover, the error between the solution of the original
Cauchy problem and the discrete regularizing solution can be estimated, leading to
a suggestion for an optimal mesh size. The numerical computations for the classical
Hadamard examples as well as inhomogeneous problems demonstrate the efficiency of
our approach.

Notation.

〈. , .〉 = Euclidean scalar product in RJ+1;

|.|2 = Euclidean norm in RJ+1;

Ω = [0, 1]× [0, 1] , ∂Ω = boundary of Ω;

Hk(Ω) = Sobolev space, k = 0, 1, 2 (H0(Ω) = L2(Ω));

H1
∗ (Ω) =

{
u ∈ H1(Ω)

∣∣∣ u|x=0 = u|x=1 = 0
}

;

[0, 1]h = {x = ih , i = 0, . . . , J} , h := 1/J ;

(0, 1)h = {x = ih , i = 1, . . . , J − 1},
= xi = ih, yj = jh, i, j = 0, . . . , J ;

Ωh = [0, 1]h × [0, 1]h , ∂Ωh = Ωh ∩ ∂Ω;

Sh = continuous, piecewise linear functions over

a uniform triangulation of [0, 1]× [0, 1];

Sh,0 =
{
vh ∈ Sh

∣∣∣ vh = 0 on ∂Ω
}

;

C[0, 1]h = continuous, piecewise linear functions over [0, 1]h;

C0[0, 1]h =
{
ϕh ∈ C[0, 1]h

∣∣∣ ϕh(0) = ϕh(1) = 0
}

;

grid functions will be denoted by capital letters, V ji = vh(xi, yj) , vh ∈ Sh;

∇w =

(
∂w

∂x
,
∂w

∂y

)>
Gradient;

D−h,xV
j
i =

1

h

(
V ji − V ji−1

)
first-order (backwards) difference quotient in x-direction;

D2
h,xV

j
i =

1

h2

(
V ji+1 − 2V ji + V ji−1

)
central difference quotient of second order in x-direction;

D+
h,yV

j
i =

1

h

(
V j+1
i − V ji

)
first-order (forward) difference quotient in y-direction;
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δh,xV
j
i = V ji − V ji−1 (= hDh,x V ji ),

first-order difference in x-direction;

‖w‖1,Ω =

(∫
Ω

{(
∂w

∂x

)2

+

(
∂w

∂y

)2
}
dx dy

)1/2

, w ∈ H1
∗ (Ω);

‖w‖0,(0,1) =

(∫ 1

0

w2 dx

)1/2

; w ∈ L2(0, 1);

|V j |0,h =
(
h
∑J
i=0 |V ji |2

)1/2 (
= h1/2|V j |2

)
;

‖V ‖1,h =

h
J−1∑
j=0

(
|D+

h,yV
j |22 + |D−h,xV j |22

)
1/2

.

2. Auxiliary results. We shall consider the simplest finite difference or finite
element approximation to the solution of Laplace’s equation. For this, let Sh ⊂ H1(Ω)
denote the finite element space of all continuous, piecewise linear function on a uniform
grid.

A discrete harmonic function wh ∈ Sh satisfies∫
Ω

∇wh · ∇ϕh dx dy = 0 ∀ϕh ∈ Sh,0.(5)

In the present simple geometry and triangulation, W j
i = wh(xi, yj) satisfies the

five-point difference equation at interior mesh points. Hence, one can write (5) as

W j+1 − 2W j +W j−1 = LhW
j ,(6)

with W j = (W j
0 , . . . ,W

j
J )> and Lh the (J−1)×(J−1) symmetric, tridiagonal matrix

with 2 in the diagonal and −1 in the off diagonals. With the second-order difference
quotient D2

h,x, Lh in (6) can be written as Lh = −h2D2
h,x. We additionally denote

the discrete Laplace operator by ∆h,

(∆hW )j = W j+1 − 2W j +W j−1 − LhW j .

In the following, we use the notion “grid function” or “discrete function” for both the
vector field W and for wh.

As a discrete analogue to the Cauchy problem (1)–(4), we consider the following
discrete boundary value problem:

U j+1 − 2U j + U j−1 = LhU
j , j = 1, . . . , J − 1,(7)

U j0 = U jJ = 0, j = 0, . . . , J,(8)

U0
i = f1,h(xi),

1

h
(U1

i − U0
i ) = f2,h(xi),(9)

i = 1, . . . , J − 1,

with grid functions f1,h, f2,h. Thus uh(xi, yj) = U ji is a discrete harmonic function
with zero boundary values at i = 0, J and discrete Cauchy data (9) for j = 0.

Let us define

Dj := U j+1 − U j , j = 0, . . . , J − 1;(10)
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then the vectors Dj = (Dj
0, . . . , D

j
J)> also define a discrete harmonic function satis-

fying the following discrete boundary value problem,

Dj+1 − 2Dj +Dj−1 = LhD
j , j = 1, . . . , J − 1,(11)

Dj
0 = Dj

J = 0, j = 1, . . . , J,(12)

D0 = hf2,h ,
1

h

(
D1 −D0

)
=

1

h
LhU

1.(13)

In order to define Dj also for j = J , we set

DJ := 2DJ−1 −DJ−2 + LhD
J−1,(14)

which means that UJ+1 is defined by the equation of a discrete harmonic function.

UJ+1 − 2UJ + UJ−1 = LhU
J .(15)

We now prove a discrete Lagrange identity (cf. (16)) and a conclusion thereof for
discrete harmonic functions.

Lemma 1. For any two grid functions V and W , with V jJ = V j0 = 0 , W j
J =

W j
0 = 0 , j = 0, . . . , J , one has

J−1∑
i=1

V ji (∆hW )
j
i −W j

i (∆hV )
j
i

=
〈
V j − V j−1,W j

〉− 〈V j ,W j −W j−1
〉

(16)

− (〈V j+1 − V j ,W j+1
〉− 〈V j+1,W j+1 −W j

〉)
, j = 1, . . . , J − 1.

If, additionally, ∆hV = ∆hW = 0, then〈
V j ,W j −W j−1

〉− 〈V j − V j−1,W j
〉

=
〈
V j+1,W j+1 −W j

〉− 〈V j+1 − V j ,W j+1
〉
, j = 1, . . . , J − 1.

(17)

Proof.
i. By definition of ∆h we obtain

V ji (∆hW )ji −W j
i (∆hV )ji

= − V ji (LhW )ji +W j
i (LhV )ji

+
(
V ji (W j+1

i −W j
i )− V ji (W j

i −W j−1
i )

−W j
i (V j+1

i − V ji ) +W j
i (V ji − V j−1

i )
)
.

ii. By definition of Lh,

LhW
j
i = −W j

i+1 + 2W j
i −W j

i−1

= −
((
W j
i+1 −W j

i

)
−
(
W j
i −W j

i−1

))
.

Using summation by parts, one obtains

J−1∑
i=1

V ji

(
−LhW j

i

)
=
∑
i

V ji

((
W j
i+1 −W j

i

)
−
(
W j
i −W j

i−1

))
= −

J∑
i=1

(
W j
i −W j

i−1

)(
V ji − V ji−1

)
+ FJV

j
J − F0V

j
0 .
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Here, according to our assumption, V j0 = V jJ = 0, and, in order to define

FJ , we can arbitrarily extend W j
i for i = J + 1. Analogously, because of

W j
0 = W j

J = 0,

J−1∑
i=1

W j
i

(
−LhV ji

)
= −

J∑
i=1

(
V ji − V ji−1

)(
W j
i −W j

i−1

)
.(18)

We thus have

J−1∑
i=1

−V ji (LhW )ji +W j
i (LhV )ji = 0, j = 1, . . . , J − 1.

iii. Using the notation of the Euclidean scalar product, by summation in part i
we obtain

J−1∑
i=1

V ji (∆hW )
j
i −W j

i (∆hV )
j
i

=
〈
V j ,W j+1 −W j

〉− 〈V j ,W j −W j−1
〉

− 〈W j , V j+1 − V j〉+
〈
W j , V j − V j−1

〉
, j = 1, . . . , J − 1.

This proves (16), and, for discrete harmonic functions V and W , we obtain
(17).

Lemma 2. For any two discrete harmonic grid functions V and W , with V j0 =

V jJ = W j
0 = W j

J = 0 , j = 0, . . . , J , the following relations hold:〈
V j−ν+1,W j−ν+1 −W j−ν〉− 〈V j−ν+1 − V j−ν ,W j−ν+1

〉
=
〈
V j+1,W j+1 −W j

〉− 〈V j+1 − V j ,W j+1
〉

(19)

∀ 1 ≤ j ≤ J, ν ≥ 0 : j − ν ≥ 0.

Proof. Using (16) and summing up from j − ν + 1 until j we obtain

0 =

j∑
µ=j−ν+1

(〈
V µ,Wµ+1 −Wµ

〉− 〈V µ,Wµ −Wµ−1
〉

− 〈Wµ, V µ+1 − V µ〉+
〈
Wµ, V µ − V µ−1

〉)
=

j∑
µ=j−ν+1

(〈
V µ,Wµ+1

〉
+
〈
V µ,Wµ−1

〉
− 〈Wµ, V µ+1

〉−Wµ, V µ−1
)

=
〈
V j−ν+1,W j−ν〉− 〈V j−ν ,W j−ν+1

〉
+
〈
V j ,W j+1

〉− 〈V j+1,W j
〉
.

Obviously,〈
V j−ν+1,W j−ν〉− 〈V j−ν ,W j−ν+1

〉
= − 〈V j−ν+1,W j−ν+1 −W j−ν〉+

〈
V j−ν+1 − V j−ν ,W j−ν+1

〉
and 〈

V j ,W j+1
〉− 〈V j+1,W j

〉
=
〈
V j+1,W j+1 −W j

〉− 〈V j+1 − V j ,W j+1
〉
,

which proves (19).



STABILITY AND REGULARIZATION OF CAUCHY PROBLEM 895

Before we prove the last lemma in this section, we remark that the vectors Dj—
and hence also the vectors D+

h,yU
j of first-order difference quotients—are also defined

for j = J because we assume that the auxiliary vector UJ+1 is defined by (15).
Moreover, we assume that any vector under consideration is extended in a constant
way in the x-direction at x = 0, i.e., V−1 = V0. Therefore the RJ -vectors D−h,xU

j can

be considered as RJ+1-vectors with vanishing zeroth component. We also note that
the U ji themselves vanish for i = 0.

Lemma 3. If U satisfies (7)–(9) and the quadratic functional J(U) is defined by

Jh(U)j :=
∣∣∣D+

h,yU
j
∣∣∣2
0,h

+
∣∣∣D−h,xU j∣∣∣2

0,h
, j = 0, . . . , J,(20)

then

J(U)j ≤ J(U)
1/2
j+νJ(U)

1/2
j−ν(21)

for every j = 1, . . . , J − 1 , ν > 0 with 0 ≤ j − ν , j + ν ≤ J .
Proof. With Dj defined in (10) we can take W j = Dj in Lemma 2, since Dj is a

discrete harmonic function with vanishing boundary values for i = 0 , i = J (see (11)
and (12)). Using V ` = U2j−`+1 , ` = j − 1, j, j + 1, and W j = D̃j := Dj−1 in (19),
we have

V j+1 = U j , V j = U j+1, V j−1 = U j+2,
V j−ν+1 = U j+ν , V j−ν = U j+ν+1

and obtain 〈
U j+ν , D̃j−ν+1 − D̃j−ν〉− 〈U j+ν − U j+ν+1, D̃j−ν+1

〉
= 〈U j , D̃j+1 − D̃j〉 − 〈U j − U j+1, D̃j+1〉,

which can be written as (D̃j+1 = Dj)〈
U j , Dj −Dj−1

〉
+
∣∣Dj

∣∣2
2

=
〈
U j+ν , Dj−ν −Dj−ν−1

〉
+
〈
Dj+ν , Dj−ν〉 ,(22)

j = 1, . . . , J − 1 , ν > 0 (0 ≤ j − ν , j + ν ≤ J).

Furthermore, according to Lemma 2 (see (18)),〈
U j , Dj −Dj−1

〉
=
〈
U j , U j+1 − 2U j + U j−1

〉
=
〈
U j , LhU

j
〉

=
J∑
i=1

(
U ji − U ji−1

)2

=
∣∣δh,xU j∣∣22 ,〈

U j+ν , Dj−ν −Dj−ν−1
〉

=
〈
U j+ν , U j−ν+1 − 2U j−ν + U j−ν−1

〉
=
〈
U j+ν , LhU

j−ν〉 =
J∑
i=1

(
U j+νi − U j+νi−1

)(
U j−νi − U j−νi−1

)
=
〈
δh,xU

j+ν , δh,xU
j−ν〉 .

Hence, the left-hand side of (22) is only hJh(U)j ,〈
U j , Dj −Dj−1

〉
+
∣∣Dj

∣∣2
2

=
∣∣δh,xU j∣∣22 + |Dj |22

= h2

(∣∣∣D−h,xU j∣∣∣2
2

+
∣∣∣D+

h,yU
j
∣∣∣2
2

)
= hJh(U)j .
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The right-hand side of (22) can be estimated as follows:〈
U j+ν , Dj−ν −Dj−ν−1

〉
+
〈
Dj+ν , Dj−ν〉

=
〈
δh,xU

j+ν , δh,xU
j−ν〉+

〈
Dj+ν , Dj−ν〉

≤
(∣∣δh,xU j+ν∣∣22 +

∣∣Dj+ν
∣∣2
2

)1/2 (∣∣δh,xU j−ν∣∣22 +
∣∣Dj−ν∣∣2

2

)1/2

= hJh(U)
1/2
j+νJh(U)

1/2
j−ν .

Hence (21) is proved.

3. Stability. We are now able to prove a logarithmic convexity-type estimate
for the solution of (7)–(9).

Theorem 1. With the solution U of (7)–(9) and the functional Jh(U) defined in
(20), the following estimates hold:

Jh(U)j ≤ Jh(U)jhJ Jh(U)1−jh
0 , j = 0, . . . , J − 1.(23)

Proof.
i. In the case Jh(U)0 = 0, we set j = ν in (21) and obtain Jh(U)j ≤ 0 ∀ j; thus
Jh(U)j = 0, which proves (23) in this case.

ii. In the case Jh(U)0 6= 0, we set

ϕj := ln {Jh(U)j/Jh(U)0} , j = 0, . . . , J,

and extend {ϕj}j to a continuous, piecewise linear function F : [0, 1]→ R,

F (η) =
η − yj−1

h
(ϕj − ϕj−1) + ϕj−1, η ∈ [yj−1, yj ] , j = 1, . . . , J.

Obviously, F (0) = 0, and we shall prove that

F

(
y + ỹ

2

)
≤ 1

2
(F (y) + F (ỹ)) ∀ y, ỹ ∈ [0, 1].(24)

The convexity of F and standard arguments (see, e.g., Han and Reinhardt
[9, Thm. 2.1]) then ensure that F (y) ≤ yF (1). By the definition of F and ϕj
the desired estimate (23) is hereby proved because at y = jh

ln {Jh(U)j/Jh(U)0} ≤ jh ln {Jh(U)J/Jh(U)0} = ln

{(
Jh(U)J
Jh(U)0

)jh}
⇐⇒ Jh(U)j

Jh(U)0
≤
(
Jh(U)J
Jh(U)0

)jh
⇐⇒ Jh(U)j ≤ Jh(U)jhJ Jh(U)1−jh

0 .

iii. In order to prove (24), we first observe that

ϕj − ϕj−1 ≤ ϕj+1 − ϕj , j = 1, . . . , J − 1.(25)

This follows from (21) with ν = 1, since

ϕj = lnJh(U)j ≤ ln
{
Jh(U)

1/2
j+1Jh(U)

1/2
j−1

}
=

1

2
(ϕj+1 + ϕj−1) ,

j = 1, . . . , J − 1.
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σ`

σ`

yj−1 y yj y+ỹ
2

yk−1 ỹ yky`

Fig. 1. The idea of the proof of (24).

Let us first consider the case of y, ỹ ∈ Ij := [yj−1, yj ] for one j ∈ {1, . . . , J}.
In this case,

1

2
(F (y) + F (ỹ)) =

1

2

(
y − yj−1

h
+
ỹ − yj−1

h

)
(ϕj − ϕj−1) + ϕj−1

=
1

2

(
y + ỹ

2
− yj−1

)
(ϕj − ϕj−1) + ϕj = F

(
y + ỹ

2

)
.

Now, let y ∈ Ij , ỹ ∈ Ik, and (y + ỹ)/2 ∈ I`, where k > j without loss of
generality (see Figure 1). Let us denote

σ`(y) := ϕ`−1 +
y − y`−1

h
(ϕ` − ϕ`−1), y ∈ [0, 1].

By (25), we have

ϕj − ϕj−1 ≤ ϕj+1 − ϕj ≤ · · · ≤ ϕ` − ϕ`−1 ≤ · · · ≤ ϕk − ϕk−1

and, therefore,

σ`(y) = ϕ`−1 +
y − y`−1

h
(ϕ` − ϕ`−1) ≤ F (y).

Indeed,

ϕ`−1 +
y − y`−1

h
(ϕ` − ϕ`−1) ≤ ϕ`−2 +

y − y`−2

h
(ϕ`−1 − ϕ`−2)

⇐⇒ (ϕ`−1 − ϕ`−2) +
y − y`−1

h
(ϕ` − ϕ`−1) ≤ y − y`−2

h
(ϕ`−1 − ϕ`−2)

⇐⇒ y − y`−1

h
(ϕ` − ϕ`−1) ≤

(
y − y`−2

h
− 1

)
(ϕ`−1 − ϕ`−2)

=
y − y`−1

h
(ϕ`−1 − ϕ`−2)

and, analogously,

ϕ`−2 +
y − y`−2

h
(ϕ`−1 − ϕ`−2) ≤ ϕ`−3 +

y − y`−3

h
(ϕ`−2 − ϕ`−3)
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and so on until

ϕj +
y − yj
h

(ϕj+1 − ϕj) ≤ ϕj−1 +
y − yj−1

h
(ϕj − ϕj−1) = F (y).

In the same way, one sees that σ`(ỹ) ≤ F (ỹ). Combining the first case with
these estimates, we finally obtain

F

(
y + ỹ

2

)
=

1

2

(
σ`(y) + σ`(ỹ)

)
≤ 1

2

(
F (y) + F (ỹ)

)
,

which completes the proof of (23).
We remark that for the proof of Theorem 1 we need only the basic estimate (21)

of logarithmic convexity for ν = 1.
From (23), a stability estimate for the solution of (7)–(9) can be deduced with

respect to the seminorm ‖.‖1,h. We note that because of the vanishing boundary
values at i = 0 and i = J the discrete Poincaré–Friedrichs inequality ensures that
‖.‖1,h is a norm for such grid functions.

Theorem 2. If the solution U of (7)–(9) satisfies Jh(U)J ≤M with M > 0, then

‖U‖21,h ≤
M − ε0

lnM − ln ε0
,(26)

where ε0 := Jh(U)0.
Proof. Summing up (23), one obtains

h

J−1∑
j=0

Jh(U)j ≤ h
∑
j

Jh(U)jhJ Jh(U)1−jh
0

= Jh(U)0 h
∑
j

(
Jh(U)J/Jh(U)0

)jh
= Jh(U)0 h

∑
j

ejh ln ã
(
ã := Jh(U)J/Jh(U)0

)
≤ Jh(U)0

∫ 1

0

ey ln ã dy

= Jh(U)0
ã− 1

ln ã
=

Jh(U)J − Jh(U)0

lnJh(U)J − lnJh(U)0
.

If one takes into consideration that

h

J−1∑
j=0

Jh(U)j = ‖U‖21,h ,

the stability estimate (26) is proved.
In the trivial case Jh(U)0 = 0, we have Jh(U)j = 0∀ j, and ‖U‖1,h = 0. In the

case (M =)Jh(U)J = Jh(U)0 (= ε0), we can take ε0 = Jh(U)0 as the right-hand side
in (26) due to l’Hospital’s rule. Let us emphasize that up to now there has been no
need for restriction on the mesh size h.
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4. A regularization method. Based on the stability estimate (26), we will
propose a regularization method for problem (7)–(9). Let U be the unique solution
of problem (7)–(9), where, for simplicity, f1,h = 0 in (9). In order to check the
regularizing properties of our approach we allow perturbations of f2,h (see also (50)
for a concrete choice of fε2,h), ∣∣f2,h − fε2,h

∣∣2
0,h

=: εf .

Then, instead of (7)–(9) we consider the problem

Ũ j+1 − 2Ũ j + Ũ j−1 = LhŨ
j , j = 1, . . . , J − 1,(27)

Ũ j0 = Ũ jJ = 0, j = 0, . . . , J,(28)

Ũ0
i = 0, i = 1, . . . , J − 1,(29) ∣∣∣∣ 1h (Ũ1 − Ũ0

)
− fε2,h

∣∣∣∣2
0,h

≤ ε,(30)

with an ε ≥ εf . Problem (27)–(30) may have many solutions—the solution U of
(7)–(9) is one of them. The question arises, which of the solutions of (27)–(30) is an
approximation to U?

Let gh ∈ C0[0, 1]h and G be the associated grid function, Gi = gh(xi), with
vanishing boundary values, G0 = GJ = 0. Let UG be a solution of (27)–(29) with

UJG,i = Gi, i = 0, . . . , J ;(31)

UG exists and is uniquely determined. Analogously to U given by (7), for j = J + 1,
let UJ+1

G be defined by the equation of a discrete harmonic function; i.e., (27) should
also hold for j = J (see also (14)).

With UJ+1
G defined as in (15), let

A0gh := A0G := 1
h

(
U1
G − U0

G

)
,

AJgh := AJG := 1
h

(
UJ+1
G − UJG

)
,

(32)

which define bounded linear operators from C0[0, 1]h into C[0, 1]h.
The set

Kε,h :=
{
gh ∈ C0[0, 1]h

∣∣∣ ∣∣A0gh − fε2,h
∣∣
0,h
≤ √ε

}
(33)

defines a closed convex subset of C0[0, 1]h which is not empty. The latter statement
holds because the solution Û := UĜ of (27)–(29), (31) with Ĝi = UJi , i = 1, . . . ,
J − 1 , lies in Kε,h, ∣∣∣A0Ĝ− fε2,h

∣∣∣2
0,h

=

∣∣∣∣ 1h (U1 − U0)− fε2,h
∣∣∣∣2
0,h

=
∣∣f2,h − fε2,h

∣∣2
0,h
≤ εf ≤ ε.

For any gh ∈ Kε,h, UG is obviously a solution of (27)–(30) and, furthermore,

Ih(G) := Jh(UG)J =
∣∣∣AJgh∣∣∣2

0,h
+
∣∣∣D−h,xG∣∣∣2

0,h
.(34)

We now consider the following minimization problem:
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Find gεh ∈ Kε,h, such that

Ih(UGε) = min
qh∈Kε,h

Ih(UQ).(35)

Since

a(gh, qh) := 〈AJgh, AJqh〉+
〈
D−h,xgh, D

−
h,xqh

〉
defines a bounded, coercive bilinear form on C0[0, 1]h ×C0[0, 1]h, problem (35) has a
unique solution, which we denote by gεh , G

ε
i = gεh(xi) , i = 0, . . . , J . The following

theorem shows that UGε is indeed an approximation of the solution U of (7)–(9).
Theorem 3. Let h > 0 be fixed and ε, εf be arbitrary constants with ε ≥ εf ≥

0. Let U be the solution of (7)–(9) with f1,h = 0 and gεh be the solution of the
minimization problem (35). Then with Gεi = gεh(xi) , i = 0, . . . , J , the solution UGε
of (27)–(29), (31) is an approximation of U satisfying the error estimate

‖U − UGε‖21,h ≤ 4
M − ε0

lnM − ln ε0
(36)

provided Jh(U)J ≤M , where ε0 = Jh(U)0.
Proof. For gεh and the associated UGε , one has

Jh(UGε)J = Ih(gεh) ≤ Ih(ĝh) = Jh(U)J ≤M,

where ĝh(xi) = Ui , i = 0, . . . , J . Note that ĝh ∈ Kε,h as shown above. Set

MG := Jh(U − UGε)J , εG := Jh(U − UGε)0.

Then MG ≤ 4M and εG ≤ 4ε0. Indeed, for any U and V ,

hJh(U − V )J =
∣∣(U − V )J+1 − (U − V )J

∣∣2
2

+
∣∣δh,x(U − V )J

∣∣2
2

=
∣∣(UJ+1 − UJ)− (V J+1 − V J)

∣∣2
2

+
∣∣δh,xUJ − δh,xV J ∣∣22

≤ 2
(∣∣UJ+1 − UJ ∣∣2

2
+
∣∣V J+1 − V J ∣∣2

2

)
+ 2

(∣∣δh,xUJ ∣∣22 +
∣∣δh,xV J ∣∣22)

= 2h(Jh(U)J + Jh(V )J)

and, according to (35), V = UGε satisfies Jh(UGε)J ≤ Jh(U)J ≤M ; in the same way,
the inequality εG ≤ 4ε0 can be proved. Using the representation

MG − εG
lnMG − ln ε0

=

∫ 1

0

Ms
Gε

1−s
G ds

and the inequalities just proved, we finally obtain

‖U − UGε‖21,h ≤
MG − εG

lnMG − ln εG
≤ 4

∫ 1

0

Msε1−s
0 ds = 4

M − ε0

lnM − ln ε0
.

We close this section by giving sufficient conditions for the stabilizing condition
Jh(U)J ≤M . Due to the definition of UJ+1 (see (15)), this is fulfilled if

|D−h,xUJ |0,h ≤M0, h|D2
h,xU

J |0,h ≤M1, |D+
h,yU

J−1|0,h ≤M2.
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5. Error estimates. Let us assume that the sufficient smooth function u∗(x, y)
is a solution of the Cauchy problem (1)–(4). In this section it is our aim to estimate
the error between u∗(x, y) and the numerical approximation UGε obtained via the
minimization problem (35). We define g∗ = u∗|y=1; then u∗ satisfies the following
properly posed boundary value problem:

∆u = 0 in [0, 1]× [0, 1],(37)

u|x=0 = u|x=1 = 0, y ∈ [0, 1],(38)

u|y=0 = 0, u|y=1 = g∗, x ∈ [0, 1].(39)

Consider the discrete approximation of the problem (37)–(39) and denote by u∗h ∈
Sh the grid function which solves (27)–(29) together with u∗h(xi, 1) = g∗(xi) , i =
0, 1, . . . , J . Using the standard methods, we obtain the following error estimates
between u∗ and u∗h:

‖u∗ − u∗h‖1,h = O(h),(40)

|u∗(xi, yj)− u∗h(xi, yj)| = O(h2), 0 ≤ i, j ≤ J.(41)

Thus

f∗2,h(xi) :=
1

h
(u∗h(xi, y1)− u∗h(xi, y0))

=
1

h
(u∗(xi, y1)− u∗(xi, y0)) + O(h)

=
∂u∗(xi, 0)

∂y
+ O(h).

We define

f2,h(xi) = f2(xi), 0 ≤ i ≤ J ;

then ∣∣f2,h − f∗2,h
∣∣
0,h
≤ √ε2 + c1h,

with c1 > 0.
On the other hand,∣∣f∗2,h − fε2,h∣∣0,h ≤ ∣∣f∗2,h − f2,h

∣∣
0,h

+
∣∣f2,h − fε2,h

∣∣
0,h

= c1h+
√
ε2 +

√
εf .

We set εf,h =
(
c1h+

√
ε2 +

√
εf
)2

. For any ε ≥ εf,h, we know that there exists a
unique gεh as solution of the minimization problem (35) and an associated uεh ∈ Sh
which solves (27)–(29) and uεh(xi, 1) = gεh(xi) , i = 0, . . . , J . We now want to estimate
the error u∗ − uεh and we have

‖u∗ − uεh‖1,h ≤ ‖u∗ − u∗h‖1,h + ‖u∗h − uεh‖1,h .
The first term on the right-hand side can be estimated from (40). We now estimate
the second term; u∗h and uεh satisfy (27)–(29). Furthermore we have∣∣∣∣ 1h(u∗h(., y1)− u∗h(., y0)

)
− fε2,h

∣∣∣∣2
0,h

≤ ε;
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thus

Jh(uεh)J ≤ Jh(u∗h)J .(42)

On the other hand,

Jh(u∗h − uεh)0 =

∣∣∣∣f∗2,h − 1

h

(
uεh(., y1)− uεh(., y0)

)∣∣∣∣2
0,h

≤
{∣∣f∗2,h − fε2,h∣∣0,h +

∣∣∣∣fε2,h − 1

h

(
uεh(., y1)− uεh(., y0)

)∣∣∣∣
0,h

}2

≤ 4ε.

We utilize the techniques developed in section 4 and obtain

‖u∗h − uεh‖21,h ≤ 4
Jh(u∗h)J − ε

lnJh(u∗h)J − ln ε
.(43)

Together with (40), we have

‖u∗ − uεh‖1,h ≤ Ch+ 4
Jh(u∗h)J − ε

lnJh(u∗h)J − ln ε
,(44)

with a constant C > 0. Herein, by using (41),

Jh(u∗h)J = Jh(u∗)J + O(h).(45)

It is an open question whether the error bound on the right-hand side of (43) or (45)
can be further estimated in powers of ε and h completely. Presumably, this is not
the case since the bound on the right-hand side is quasi-optimal—i.e., optimal up to
O(h)—since the stability bound in (26) with U = u∗ is quasi-optimal according to
the optimality of the related quantity in the continuous case (see Remark 3.1 in [9]).
Obviously, the O(h) always includes bounds for the first or second derivatives of the
solution u∗ of (37)–(39).

6. Numerical examples. In [9] we have applied our regularization method to
the classical example of Hadamard [7]. Here, we present two examples for inhomoge-
neous Cauchy problems of the form

∆u = f in [0, 1]× [0, 1];

u|x=0 = γ0(y), u|x=1 = γ1(y), y ∈ [0, 1];(46)

u|y=0 = f1(x),
∂u

∂y

∣∣∣∣
y=0

= f2(x), x ∈ [0, 1].

The examples chosen are such that the solutions are known.
Example 1. u(x, y) = exp(x+ y).
Example 2. u(x, y) = x10y10.
The solution of (46) is split in two parts, u = u(1) + u(2), namely, the solution

u(1) of the direct problem

∆u(1) = f in [0, 1]× [0, 1],

u(1)|x=0 = γ0, u(1)|x=1 = γ1,(47)

u(1)|y=0 = f1, u(1)|y=1 = ĝ,
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Table 1
Relative L2-errors at y = 1.

h|εf 100 10−2 10−4 100 10−2 10−4

1
25

0.0887367 0.0473986 0.0472566 1.40233 1.04704 1.04001

1
50

0.0305681 0.0255552 0.0240529 1.00207 0.938912 0.933708

1
100

0.0361468 0.0133044 0.01309 1.06288 0.847121 0.752594

1
200

0.0107969 0.0095872 0.00840506 0.956352 0.561189 0.537604

Example 1: exp(x+y) Example 2: x10y10

with ĝ(x) = xγ1(1) + (1− x)γ0(1), and the solution u(2) of the inverse problem

∆u(2) = 0 in [0, 1]× [0, 1],

u(2)|x=0 = u(2)|x=1 = 0,(48)

u(2)|y=0 = 0,
∂u(2)

∂y

∣∣∣∣
y=0

= f̂2,

with f̂2 = f2 −
(
∂u(1)/∂y

) |y=0. We allow perturbations of f2 by adding (pointwise)
εf times a random function varying in [−1, 1].

For numerical approximations, we discretize by a uniform mesh size h in the x-

and y-direction and obtain a numerical solution u
(1)
h to the direct problem (47). An

approximation u
(2)
h to the Cauchy problem (48) is then determined by the solution of

(27)–(29), where the boundary values gh at y = 0 are obtained via the minimization

problem (35). The side condition (see Kε,h given by (33)) utilizes u
(1)
h and is of the

form ∣∣∣D+
h,yu

(2)
h (., 0)− fε2,h

∣∣∣
0,h
≤ ε(49)

with ε ≥ εf , fε2 from (4) and

fε2,h := fε2 −D+
h,yu

(1)
h (., 0).(50)

We know from section 5 that ε should be also greater than the mesh size h in order
to guarantee the error estimate (44). Therefore we have chosen ε = εf + ch, where c
is a bound for uyy|y=0 ; if one doesn’t know such a bound, we suggest choosing c = 1.

For computational purposes, Ih in (34), (35) should be written in form of a
quadratic functional. Denoting by Ah the matrix associated with the linear opera-
tor AJ (see (32))—e.g., with respect to piecewise constant or piecewise linear basis
functions—the functional Ih can be expressed as Ih(G) = 〈BhG,G〉 with

Bh = h
(−D2

h,x +A∗hAh
)
.

From gh = G, the boundary value of u
(2)
h at y = 1, we obtain the desired boundary

values for u via gh + ĝ.
We have used the Fortran subroutines QL0001 and QL0002 of Schittkowski based

on a computer code of Powell [16] to calculate the solution of the quadratic minimiza-
tion problem. All calculations were performed in single precision.

Table 1 shows the relative L2-errors at y = 1 for various mesh sizes h and different
magnitudes of εf in the perturbation of f . In Example 1, the decrease of h and εf
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2.5
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3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sol. exp(x+1)
Approx. h=1/100
Approx. h=1/50
Approx. h=1/25

Fig. 2. Example 1 at y = 1.

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sol. x**10
Approx. h=1/200
Approx. h=1/100
Approx. h=1/50

Fig. 3. Example 2 at y = 1.

caused a decrease of the relative errors such that this example behaves nearly well
posed. Example 2 behaves differently, which is very likely due to the steep gradients at
x = 1. The relative errors decreased very slowly and did not become smaller than 53%.

Figures 2 and 3 display the exact solutions at y = 1 together with the numerical
approximations at grids of size 100 × 100 , 50 × 50, and 25 × 25—all with data per-
turbations of magnitude εf = 10−2. As Table 1 has already indicated, the results for
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Example 1 are very good and approach the exact solution as h decreases. In Exam-
ple 2, the errors are relatively large but the shapes of the approximating curves are
indeed similar to that of the exact solution and have steep gradients also at y = 1.
There may be some remedies to improve the results for Example 2 which have to be
investigated.
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