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Abstract. In this paper we generalize Milnor’s µ-invariants of classical links to

certain (“κ-Brunnian”) higher dimensional link maps into fairly arbitrary manifolds.
Our approach involves the homotopy theory of configuration spaces and of wedges of
spheres. We discuss the strength of these invariants and their compatibilities e.g. with
(Hilton decompositions of) linking coefficients. Our results suggest, in particular, a

conjecture about possible new link homotopies.

Introduction

Given r ≥ 2 and arbitrary dimensions p1, . . . , pr ≥ 1 and m ≥ 3, we want to
study link maps

f = f1 q · · · q fr : Sp1 q · · · q Spr −→ M

(i.e. the spheres Spj have pairwise disjoint images under the continuous maps
fj , 1 ≤ j ≤ r) up to link homotopy (i.e. up to continuous deformations through
such link maps). Here M denotes a smooth m–dimensional manifold which we
assume (without much loss of generality) to be also connected and to have no
boundary. One further restriction seems to be more essential for our approach:
M must satisfy a certain openness condition (see 2.1 below); in particular, closed
manifolds must be punctured first before we can apply certain parts of our theory
(cf. 5.3 below).

Our basic invariants are the homotopy class (in the standard sense)

κ(f) := [f̂ ] ∈ [Sp1 × · · · × Spr , C̃r(M)]

and its base point preserving analogon

κb(f) := [f̂ ] ∈ [(Sp1 × · · · × Spr , ∗), (C̃r(M), (y◦1 , . . . , y◦r ))]
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where the product map f̂ = f1×· · ·×fr takes values in the configuration space of
ordered r–tuples of pairwise distinct points in M . Now it is a very special feature
of this product map that the jth component of the value f̂(x1, . . . , xr) depends
only on the jth component xj of the argument. In particular, any link map and
– likewise – any link homotopy can be reconstructed from its product map.

By the transition to standard homotopy this “equivariance” gets lost. Thus at
first sight our κ–invariants seem to be rather crude. Yet surprisingly in many inter-
esting cases they turn out to determine link maps completely up to link homotopy.

The special symmetry properties of f̂ suggest also that the κ–invariants may
lie in much smaller and more manageable homotopy sets (or even groups). This is
indeed the case if we concentrate on highest order linking phenomena and assume
that f is κ–Brunnian (i.e. f̂ is nulhomotopic when restricted to the complement
of the top cell in Sp1 × · · · ×Spr ). Then we can simplify e.g. κb(f) until we arrive
at the following situation

κ′(f) −−−−→ µ(f) = {µγ(f)}γ∈Σr−2

∈ ∈

π′|p|(M − {y◦1 , . . . , y◦r−1})
h ◦ ca−−−−→

⊕
γ∈Σr−2

πS
|p|−(r−1)(m−2)−1 ,

(I.1)

where
|p| := p1 + · · ·+ pr. (I.2)

Here κ′(f) is a well defined invariant which contains precisely as much infor-
mation as κb(f); it lies in a certain (“reduced”) subgroup of the homotopy group
of M , punctured at r − 1 points. h denotes a Hopf homomorphism which is
known to be bijective if |p| ≤ r(m − 2) (cf. [K 5], § 3). In the same dimension
range the homomorphism ca performs some kind of localization: it forgets ev-
erything which occurs outside of a suitably embedded ball in M . In particular,
our total µ–invariant µ(f) := h ◦ ca(κ′(f)) (whose components are indexed by
the permutations γ of r − 2 elements) does not capture phenomena related to
the fundamental group G of M . To make up for this, we introduce the stronger
invariant µ̃(f) which often turns out to consist of the µ–invariants of all possible
liftings of f to the universal covering space M̃ of M (see definition 2.11 and
corollary 2.16 below).

Question. How much information gets lost by the simplification procedure which
extracts µ̃(f) from κb(f)?

We encounter two sharply different situations.
Case I: M̃ is (m−2)–connected. Here the answer is “none” at least if p1, . . . , pr

≤ m − 2 : we may replace the unwieldy invariant κb(f) by the much simpler
“numerical” invariant µ̃(f) which is seen to contain precisely as much information
(see theorem 5.6).

This is illustrated e.g. in the classical dimension setting when p1, . . . , pr =
1, m = 3 and M is oriented. Here µ̃ takes values in the group ring of
Gr−1 × Σr−2 and can be proved to describe just (a reparametrized version of)
the “elementary sentence” which J. Milnor [M 1] attached to κ–Brunnian links (he
would call them almost trivial ). Thus Milnor’s results (obtained by an algebraic



LINK MAPS IN ARBITRARY MANIFOLDS 3

analysis of link groups) can be reinterpreted to show that µ̃, and hence κb, deter-
mines κ–Brunnian link maps fully up to link homotopy. Similarly, we can rephrase
work of U. Dahlmeier as an injectivity result for κ on all link maps with two
components in the 3–dimensional solid torus or punctured projective space. (All
this can be found in § 6).

Case II: M̃ is not (m−2)–connected. Here µ̃ is often definitely weaker than
κb.

To get a large supply of examples, we make a detailed study (in § 4) of link
homotopy classes of the form e∗(fr) which are described by r − 1 standard
spheres in parallel hyperplanes in a suitable small ball B ⊂ M and by a “linking
coefficient”

[fr] ∈ π′pr

(M −
◦
B) ∨

r−1∨
j=1

S
m−pj−1
j


involving the meridians S

m−pj−1
j . Such link homotopy classes are often provided

by homotopy Brunnian links in codimensions > 2 (cf. 4.6). A careful analysis
comparing the “input” fr to the resulting invariant (“output”) κ′(e∗(fr)) shows
that we obtain a group homomorphism

κ′ ◦ e∗ : π′pr
(M ∨

r−1∨
j=1

S
m−pj−1
j ) −→ π′|p|(M ∨

r−1∨
j=1

Sm−1)

which is compatible with Whitehead products or, in other words, with higher dimen-
sional commutators (see theorem 4.10). Thus, frequently κ′ ◦ e∗ can be expressed
entirely in terms of suspension homomorphisms which are defined on homotopy
groups of spheres. As a consequence one can easily exhibit settings where κ and
κ′ classify link maps fully up to link homotopy or where the κ′– or µ̃–invariants
can realize all values in their range. In particular, neither κ′ nor µ or µ̃ can
be accomodated in general in smaller groups than the ones indicated in their de-
finition (cf. I.1 and 2.6): no further universal restrictions or relations follow from
the equivariance of κb

M ; this insight supplements very nicely our effort to make the
range of our invariants as small and simple as possible. Furthermore, often a link
map f exists with µ̃(f) = 0 but κ′(f) 6= 0 (see e.g. 4.11 or 5.9). The vanishing
result in theorem 4.10 gives also a (potentially decisive) hint for where to look for
new link nulhomotopies (compare 4.12 and 4.13).

Throughout this paper we study our invariants in two parallel settings. It is
technically convenient to discuss them first in the setting of base point preserving
link maps and homotopies. Then we analyse (e.g. in § 3) the transition to base
point free link homotopy theory which seems geometrically more natural. If M is
1–connected, the two versions of our theory coincide.

Since closed manifolds must be punctured before we can apply our approach
fruitfully (for an example see 1.6; compare also 5.3), we discuss also in some detail
the effect of removing a discrete subset from M (cf. 5.1 and 5.2). Moreover, in
very general situations we relate our invariants to “linking coefficients” (cf. 2.20).

Acknowledgement. It is a pleasure to thank Derek Hacon, Uwe Kaiser and Karl
Otto Stöhr for stimulating discussions.
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Notations and Conventions. Spheres, their products, wedges etc. are endowed
with a base point ∗ (and hence also with a cell decomposition); in a wedge ∗ is
the wedge point. The configuration spaces C̃s(M) and C̃s(M̃) of M and
of its universal covering M̃ are endowed with a choice of base points y◦ =
(y◦1 , . . . , y◦s ) and ỹ◦ = (ỹ◦1 , . . . , ỹ◦s ) compatible with the obvious projections; G ∼=
π1(M) denotes the group of covering transformations of M̃ . We write Σs for the
permutation group of s elements. For any r–tuple (p) = (p1, . . . , pr) of dimensions
we put |p| = p1 + · · ·+ pr. All manifolds are assumed to be Hausdorff spaces.

Persistent use of Pontryagin–Thom bijections is understood. E.g. homotopy
classes into a wedge of spheres are considered as bordism classes of framed links
and vice versa. Similarly, πS

∗
∼= Ωfr

∗ denotes framed (i.e. stably parallelized)
bordism.

From now on we write κ′(f) for the invariant which was denoted by κ̃(f) in
the paper [K 5] where covering spaces played no role.

§ 1. The κ–invariants

In this section we introduce our basic link homotopy invariants κ(f) and κb(f).
Let M be any topological space. For an integer r ≥ 1 let

C̃r(M) := {(y1, . . . , yr) ∈ Mr | yi 6= yj for i 6= j, 1 ≤ i, j ≤ r} (1.1)

denote the (ordered) configuration space of r pairwise distinct points in M (with
the subspace topology inherited from Mr).

Given an r–tuple (p) = (p1, . . . , pr) of nonnegative integers, we denote by qSpj

and
S(p) := Sp1 × · · · × Spr (1.2)

the disjoint union and product, resp., of the corresponding unit spheres.

Definition 1.3. A continuous map

f = f1 q · · · q fr : qSpj −→ M

is called a link map if the component maps fj have pairwise disjoint images.

This is equivalent to the following condition: the product map

f̂ := f1 × · · · × fr (1.4)

maps S(p) into the subspace C̃r(M) of Mr. Similarly a link homotopy of f (i.e.
a homotopy through link maps) gives rise to a homotopy (in the usual sense) in
C̃r(M). Thus we obtain the link homotopy invariant

κ(f) = κM(f) := [f̂ ] ∈
[
S(p), C̃r(M)

]
(1.5)

in the base point free standard homotopy set to the right. (We will often drop the
subscript M if no confusion can arise).
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Example 1.6 : open vs. closed manifolds. Let r = 2.
If M = Rm, then C̃2(M) is homotopy equivalent to Sm−1 (via (y1, y2) −→

(y1 − y2)/‖y1 − y2‖); the degree (or suspension) map [S(p), Sm−1] −→ Ωfr
∗ ∼= πS

∗
takes κRm(f) to the generalized linking number ±α(f) which is known often
to capture much of the linking behaviour of f (see e.g. [K 2]) and to classify f
completely up to link homotopy if 2p1 + 2p2 ≤ 3m− 5 (see [HK]).

If M = Sm , then the projection

pr : C̃2(Sm) −→ C̃1(Sm) = Sm ,

pr(y1, y2) = y1, is a homotopy equivalence (its fiber being contractible) and com-
patible with f̂ and with the first projection in S(p); since also f1 is nulhomotopic
in Sm − f2 (point), the invariant κSm(f) is trivial.

Definition 1.7. A link map f (as in 1.3) is called homotopy trivial if it is link
homotopic to a link map all of whose component maps are constant.

f is called homotopy Brunnian if every proper sublink map is trivial in this
sense.

f is called κM–trivial (or simply κ–trivial) if κM(f) is trivial, i.e. f̂ is
nulhomotopic (in the standard base point free sense).

f is called κM–Brunnian (or simply κ–Brunnian) if for j = 1, . . . , r the
product map f̂ is nulhomotopic when restricted to

Xj := Sp1 × · · · × Spj−1 × ∗j × Spj+1 × · · · × Spr

(where ∗j ∈ Spj is the base point).

It will be useful to study also the base point preserving version of the κ–invariant.
Fix a base point y◦ = (y◦1 , . . . , y◦r ) of C̃r(M). If the link map f (as in 1.3) preserves
base points (i.e. fj(∗j) = y◦j for j = 1, . . . , r), then the homotopy class (of pointed
spaces)

κb(f) = κb
M(f) := [f̂ ] ∈

[
(S(p), ∗), (C̃r(M), y◦)

]
(1.8)

is obviously an invariant of the base point preserving link homotopy class of f .

§ 2. The µ– and µ̃–invariants of a base point preserving κ–Brunnian
link map

From now on we assume that r ≥ 2, p1, . . . , pr ≥ 1 and that M is a smooth
connected manifold, without boundary, of dimension m ≥ 3, having a countable
basis and satisfying the following (“openness”)

Condition 2.1. There exists a closed subset A of M which is diffeomorphic
to Rm−1 × [0,∞) (or, equivalently, to the halfball {x ∈ Rm | ‖x‖ ≤ 1, xm > 0}).

This condition holds e.g. if M is the interior M − ∂M of any smooth m–
manifold M with nonempty boundary ∂M , or if M is obtained by puncturing
any smooth m–manifold without boundary (i.e. by removing one point).

It follows in particular from 2.1 that there is a smooth embedding (“arc”)

a : [0,∞) ↪→ M (2.1’)
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which is proper (i.e. the inverse image of any compact subset of M is again
compact). This implies e.g. that the locally trivial fibration (cf. [FN])

pr : C̃r(M) −→ C̃r−1(M) , (2.2)

pr(y1, . . . , yr) := (y1, . . . , yr−1), admits a continuous section (just add a “faraway
point” yr = a(t) with t � 0 depending continuously on y1, . . . , yr−1; e.g. yr =
(0,
∑r−1

i=1 ϕ(yi) + 1) ∈ Rm−1 × [0,∞) ∼= A where ϕ is the projection to the last
coordinate on A and ϕ ≡ 0 outside of A). Therefore, the fiber inclusion

incl : M − {y◦1 , . . . , y◦r−1} ↪→ C̃r(M) (2.3)

induces a monomorphism of homotopy groups.
Now consider a link map f as in definition 1.3 which, in addition, preserves base

points (compare 1.8). We want to concentrate on linking phenomena of highest
order and therefore assume also that f is κM–Brunnian (cf. 1.7).

Then we can conclude that there is a unique element

κ′(f) = κ′M(f) ∈ π′|p|
(
M − {y◦1 , . . . , y◦r−1}, y◦r

)
:=

r−1⋂
j=1

ker (fillj∗) (2.4)

which gets mapped to κb
M(f) under the injective composite map

π|p|
(
M − {y◦1 , . . . , y◦r−1}, y◦r

) incl∗
↪→ π|p|

(
C̃r(M), y◦

)
quot∗

↪→
[
(S(p), ∗), (C̃r(M), y◦)

]
(2.5)

(compare [P], Satz 12, 13, and 20, as well as [K 5], § 4). Here fillj denotes the
inclusion into M − {y◦1 , . . . , y◦j−1, y◦j+1, . . . , y

◦
r−1} (“filling back in” the missing

point y◦j ) and quot : S(p) −→ S|p| pinches all but the top cell into a point;
moreover, |p| := p1 + · · ·+ pr.

In order to extract first µ(f) and then also µ̃(f) from κ′(f), consider the
following diagram.

(2.6)
Here the reduced homotopy group

π′|p|

(
r−1∨

Sm−1

)
:=

r−1⋂
j=1

ker

π|p|

(
r−1∨
i=1

Sm−1
i , ∗

)
−→ π|p|

r−1∨
i=1
i6=j

Sm−1
i , ∗



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is defined in analogy to (2.4); the Hopf homomorphism hγ measures (up to framed
bordism) that part of the overcrossing locus of a framed link where the components
are “stacked on top of one another” according to the order given by the permutation
γ ∈ Σr−2 (with the (r − 1)st link component lying at the bottom; cf. [K 5], § 3).

The construction of the homomorphism ca depends on the choice a = (a1, . . . ,
ar−1) of proper, smoothly embedded and pairwise disjoint arcs aj : [0,∞) ↪→
M − {y◦r} such that aj(0) = y◦j , together with local orientations of M at y◦j
(which yield normal orientations and – unique up to isotopy – framings of aj in
M), j = 1, . . . , r− 1; such arcs exist due to condition 2.1’. Given a generic smooth
map u : (S|p|, ∗) −→ (M − {y◦1 , . . . , y◦r−1}, y◦r ), ca ([u]) is defined by the framed
bordism class of the link

r−1∐
j=1

u−1 (aj [0,∞)) ⊂ S|p| − {∗} ∼= R|p| . (2.7)

Remark 2.8. h ◦ ca is still well defined when the aj are only (possibly singu-
lar) proper disjoint paths (and hence, in general, the “intersections” u t aj =
(u × aj)−1(diagonal ∆ ⊂ M ×M) define only a nonembedded nonspherical link
map into R|p|; they are stably framed since the obvious homotopy aj ∼ y◦j induces
a trivialization of the pullback of the normal bundle ν(∆, M ×M) ∼= proj∗2(TM)
under u × aj). In particular, h ◦ ca remains invariant under proper disjoint ho-
motopies of the aj .

We define the µ–invariants of the κM -Brunnian link map f by

µγ(f) = µM,γ(f) := hγ ◦ ca(κ′M(f)) ∈ πS
|p|−(r−1)(m−2)−1, γ ∈ Σr−2. (2.9)

Together they yield the total µ–invariant of f

µ(f) = µM(f) := {µM,γ(f)} ∈
⊕

γ∈Σr−2

πS
|p|−(r−1)(m−2)−1 .

Note that a change of our chosen local orientations of M at k points y◦j just modifies
h ◦ ca and hence µ(f) by the factor (−1)k.

Next we use the universal covering p : M̃ −→ M to refine the µ–invariant. Fix
a base point ỹ◦ = (ỹ◦1 , . . . , ỹ◦r ) of C̃r(M̃) which gets mapped to y◦ ∈ C̃r(M)
by p. Choose a fixed global orientation of M̃ which then also determines all our
choices of local orientations of M̃ . Let

fĩllj∗ : π|p|

(
M̃ −

r−1⋃
i=1

p−1{y◦i }, ỹ◦r

)
−→ π|p|

M̃ −
r−1⋃
i=1
i6=j

p−1{y◦i }, ỹ◦r


be induced by the inclusion (filling back in the fiber p−1{y◦j } of the covering map).
Our µ̃– invariants are constructed from the unique element

κ̃′(f) = κ̃′M(f) ∈ π′|p|

M̃ −
r−1⋃
j=1

p−1{y◦j }, ỹ◦r

 :=
r−1⋂
j=1

ker(fĩllj∗) (2.10)



8 ULRICH KOSCHORKE

such that p∗(κ̃′(f)) = κ′(f) (see diagram 2.6).
Let G ∼= π1(M ; y◦r ) denote the group of covering transformations. Each g =

(g1, . . . , gr−1) ∈ Gr−1 determines the system (g1 ◦ ã1, . . . , gr−1 ◦ ãr−1) of proper
disjoint arcs in M̃ which lift the chosen arcs a1, . . . , ar−1 (given in M) such
that gj ◦ ãj(0) = gj(ỹ◦j ) for 1 ≤ j < r. Let c̃g

a be the resulting homomorphism
(constructed as in 2.7). This describes the remaining arrows in diagram 2.6.

We define the (total) µ̃–invariant of the base point preserving κM–Brunnian link
map f by

µ̃(f) = µ̃M(f) := {µ̃M,g(f)} ∈
⊕

(g,γ)∈Gr−1×Σr−2

πS
|p|−(r−1)(m−2)−1 (2.11)

where µ̃M,g(f) := h ◦ c̃g
a(κ̃′M(f)).

Now let k denote the number of (“base”) points y◦j , 1 ≤ j ≤ r − 1, where the
chosen local orientation of M is not given by the orientation of M̃ at ỹ◦j via
the covering map p. For g = (g1, . . . , gr−1) ∈ Gr−1 put sign(g) =

∏
j sign(gj)

where sign(gj) equals +1 (or −1) when gj is orientation preserving (or reversing,
resp.), j = 1, . . . , r − 1.

Proposition 2.12.

µM(f) = (−1)k
∑

g∈Gr−1

sign(g)µ̃M,g(f) .

Proof. Represent κ′M(f) by a generic smooth map u : (S|p|, ∗) −→ (M −{y◦1 , . . . ,

y◦r−1}, y◦r ) and let ũ be the lifting to M̃ such that ũ(∗) = ỹ◦r . Then, in
2.7, u−1(aj [0,∞)) equals the inverse image

⋃
ũ−1(gj ◦ ãj [0,∞)) of all liftings

gj ◦ ãj , gj ∈ G, of the arc aj . For every γ ∈ Σr−2 this leads to the desired
decomposition

hγ

(
q u−1(aj [0,∞))

)
=

∑
g∈Gr−1

±hγ

(
q ũ−1(gj ◦ ãj [0,∞))

)
of µγ(f) = hγ ◦ ca[u] into a finite sum. �
Example 2.13. If M is simply connected, then µM(f) = ±µ̃M(f) is invariant
under base point free link homotopies of f (since κb

M(f) is). If in addition M is
contractible, then there exists a (homology and hence weak) homotopy equivalence
∨r−1Sm1 ↪→ M − {y◦1 , . . . , y◦r−1} such that the induced isomorphism is an inverse
of ca (cf. diagram 2.6; compare also the proof of theorem 5.6 below for a similar
argument); therefore in this case the µ–invariant of f is also independent of
the choice of the arcs involved in its construction. In particular, if M = Rm we
obtain again the well defined µ–invariants which were studied in [K 5] and which
generalize Milnor’s µ–invariants of classical almost trivial links.

Example 2.14: r = 2, M ⊂ Rm open. Given a singular manifold u in M−{y◦1},
its intersection in Rm with a ray y◦1 + [0,∞) · z (z ∈ Sm−1) is bordant to its
intersection with a suitable arc a1 in M (as in 2.7 or 2.8). Therefore, if the value
of µM(f) is independent of the choice of the arc a1 (e.g. if p1 + p2 ≤ 2m− 4, cf.
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the proposition 2.15 below), then this invariant coincides with the framed bordism
class of the inverse image ϕ−1

f {z} of z under (a suitable approximation of) the
map

ϕf : Sp1 × Sp2 −→ Sm−1 ,

ϕf (x1, x2) := (f1(x1) − f2(x2))/‖f1(x1) − f2(x2)‖, i.e. with the “α–invariant”
µRm(f) (compare e.g. [K 1]) which is always well defined (whether f is κM–
Brunnian or not).

It remains to study in general the impact of the choices of the arcs which are
used in the construction of ca or c̃g

a (see also remark 2.8).

Proposition 2.15. Assume |p| ≤ r(m− 2).
Then the homomorphisms ca and c̃g

a, g ∈ Gr−1, in diagram 2.6 are inde-
pendent of the choice of the system of arcs a involved in their construction. In
particular, the invariants µ(f) and µ̃(f) depend only on the base point preserving
link homotopy class of f (and on the choice of (local) orientations).

Moreover, the homomorphisms h and h̃ in diagram 2.6 are bijective.

Proof. For the last claim see theorem 3.1 in [K 5].
To prove the first statement consider two systems a, a′ of arcs and a map u

as in 2.7. Since suitable proper homotopies do not affect h ◦ ca or h ◦ ca′ we can
make all arcs in a and a′ disjoint (except at their starting points). So it suffices
to check what happens when we substitute just one arc aj at a time by a′j , e.g. for
j = 1.

Let a0 : R ↪→ M −
⋃r−1

aj([0,∞)) be a smooth proper path which first follows
a parallel of a1 (but in the opposite direction) until it reaches a neighbourhood of
a1(0) = a′1(0) = y◦1 and then proceeds along a′1. The corresponding inverse image
u−1(a0(R)) adds a new disjoint component to the framed link in 2.7. Equivalently,
it defines an extended homotopy class

v ∈ π|p|

Sm−1
0 ∨

r−1∨
j=1

Sm−1
j


which maps to ca[u] (or c(a′1,a2,...,ar−1)[u], resp.) when Sm−1

0 collapses to a point
(or maps identically to Sm−1

1 , resp.) while
∨r−1

Sm−1
j remains unchanged. (In

order to understand the second case, deform the arc a′1 until it first follows a1

beyond the compact image of u and then returns back along a0).
If there is a nulhomotopy of u in M − {y◦1 , . . . , y◦j−1, y

◦
j+1, . . . , y

◦
r−1} for 1 ≤

j ≤ r − 1 (e.g. if [u] = κ′M(f), cf. 2.4), it yields a nulbordism once we drop the jth
component u−1(aj [0,∞)) from the extended link u−1(a0(R))q . . . constructed
above; equivalently, v becomes trivial when we collaps Sm−1

j to a point. Hence
in the Hilton decomposition (cf. [Hi]) of v only those Whitehead products play a
nontrivial role which involve each sphere Sm−1

j , j = 1, . . . , r− 1 , (at least) once;
for dimension reasons they can therefore not involve Sm−1

0 . Thus the extended
homotopy class v originates in the sub-wedge

∨r−1
Sm−1

j ; consequently, its two
images ca[u] and c(a′1,a2,...,ar−1)[u] coincide.
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The same argument applies to M̃ . Since the homomorphism c̃g
a factors through

π′|p|(M̃ − {g1(ỹ◦1), . . . , gr−1(ỹ◦r−1)}), it is independent of the arcs starting in the
missing points gj(ỹ◦j ). �

The previous result makes the transition from M to M̃ more transparent.
Consider the lifting

f̃ = f̃1 q · · · q f̃r : qSpj −→ M̃

of our base point preserving κM–Brunnian link map f such that fj(y◦j ) = ỹ◦j
for j = 1, . . . , r. Then for every system g = (g1, . . . , gr−1) ∈ Gr−1 of covering
transformations the lifting

f̃g = g1 ◦ f̃1 q · · · q gr−1 ◦ f̃r−1 q f̃r : qSpj −→ M̃

is κeM–Brunnian (and base point preserving for the obvious choice of base point
g ◦ ỹ◦ in C̃r(M̃); but as we will see in § 3, in our dimension range µ–invariants
are base point free link homotopy invariants in M̃).

Corollary 2.16. If |p| ≤ r(m− 2) then

µ̃M,g(f) = µM̃(f̃g) for all g ∈ Gr−1.

Proof. The constructions of the two invariants are compatible at every step. In
particular, c̃g

a(κ̃′M(f)) and cea(κ′
M̃

(f̃g)) are well defined (without depending on
any choice of arcs) and coincide. �

Finally we discuss a situation where our µ–invariants can be described in terms of
“linking coefficients” (and where they, therefore, turn out to be again independent
of the choice of arcs involved in their construction).

Definition 2.17. f1 q · · · q fr−1 is said to admit a strong link nulhomotopy if it
can be extended to a link map

F1 q · · · q Fr−1 :
r−1∐
j=1

Bpj+1 −→ M − {y◦r}

(i.e. the balls have disjoint images already in M , not only in M × I).

If such a strong link homotopy exists, its intersection with fr yields a (non-
spherical) framed link map

b =
r−1∐
j=1

bj :
r−1∐
j=1

N
pj+pr+1−m
j −→ Spr − {∗} = Rpr (2.18)

as follows. After suitable approximations the maps

Fj × fr : Bpj+1 × Spr −→ M ×M

are smooth and transverse to the diagonal ∆ ⊂ M ×M ; the resulting manifolds
Nj = (Fj × fr)−1(∆) are closed, framed (use a contraction of Bpj+1 to the
boundary point ∗ ∈ Spj , as well as a local orientation of M at fj(∗)), and
equipped with the desired (projection) maps bj to Rpr , j = 1, . . . , r − 1. Clearly,
the (singular) framed link bordism class [b] of b (and hence also its values under the
Hopf homomorphisms hγ , cf. [K 5], § 3) depend only on the (pointed) homotopy
class of fr in M −

⋃r−1
j=1 fj(Spj ).
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Example 2.19. If all Fj are smooth embeddings and if fr maps into a wedge of
meridians of the fj , then [b] is just the singular framed link bordism class corre-
sponding to the linking coefficient [fr] ∈ π∗(

∨r−1
Sm−pj−1).

Proposition 2.20. Let f =
∐r

j=1 fj be a base point preserving κM–Brunnian
link map such that f1 q · · · q fr−1 admits a strong link nulhomotopy. Assume
1 ≤ pr ≤ m− 2. Then

±µ(f) = h([b])

is the value of the total Hopf homomorphism h = ⊕hγ on the link map b into Rpr

defined in 2.18.

Proof. Due to our dimension condition we may assume that fr avoids the arcs
a1, . . . , ar−1 used in the construction of µ(f).

Define maps

`j : Spj × [0,∞) −→ M − {y◦r} , j = 1, . . . , r − 1,

by

`j(x, t) =
{

Fj ((1− t)x + t∗) if t ∈ I = [0, 1],
aj(t− 1) if t ∈ [1,∞).

This gives, in particular, a homotopy

S(p) × I −→ C̃r−1(M), (x1, . . . , xr, t) −→ (`1(x1, t), . . . , `r−1(xr−1, t)),

which can be lifted to C̃r(M) via an additional component map

`r : S(p) × I −→ M

in such a way that `r(x1, . . . , xr, 0) = fr(xr) and `r(x1, . . . , xr−1, ∗r, t) = y◦r for
all (x1, . . . , xr, t) ∈ S(p) × I. In other words, we obtain a homotopy from the
product map f̂ of f (cf. 1.4) to a map w (into the fiber M − {y◦1 , . . . , y◦r−1} )
which is constant on X = Sp1 × · · · ×Spr−1 ×{∗r}. Thus, by intersecting w with
the arcs aj , we obtain a framed link w̄ in S(p) −X = Sp1 × · · · × Spr−1 × Rpr .
We have µ(f) = ±h(w̄) (compare diagram 5 and proposition 2.2 in [K 5]).

But now consider the intersections (for j = 1, . . . , r − 1)

(`r t `j)+ := {(x, t, τ) ∈ S(p) × I × [0,∞) | `r(x, t) = `j(x, τ), t < τ} .

Together with obvious maps (projections) into S(p) −X they yield a framed sin-
gular bordism between (at t = 1) the link w̄ defined above and (at t = 0) a
link map of the form

r−1∐
j=1

id
Sp1×···×dSpj×...Spr−1 ×(b′j , bj) : Nj −→ Spj × Rpr

where bj is as in 2.18; b′j can be made constant after an additional link bordism.
We can therefore conclude (compare [K 5], 6.1) that

±µ(f) = h(w̄) = ±h(b) .
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§ 3. The base point free version of the µ̃–invariant

In this section we study the effect of (link) homotopies which do not preserve
base points.

There is a canonical isomorphism

π1(C̃r(M), y0) ∼= π1(Mr, y0) ∼=
r⊕

j=1

π1(M,y0
j ) ∼= Gr .

Moreover the base point free homotopy set [S(p), C̃r(M)] is just the orbit set of
the following standard action of this group on [(S(p), ∗), (C̃r(M), y0)] : given ḡ =
(ḡ1, . . . , ḡr) ∈ Gr and v : (S(p), ∗) −→ (C̃r(M), y0), deform v until it is constant
on an ε-ball B(∗, ε) around the base point ∗ and then replace v | B(∗, ε) by the
map x −→ c(‖x‖/ε); here [c = (c1, . . . , cr)] ∈ π1(C̃r(M), y0) corresponds to ḡ.

Actually, we may assume that the paths cj : I −→ M are disjoint and smooth,
embedding (0, 1), with liftings c̃j in M̃ which join c̃j(0) = ỹ0

j to c̃j(1) =
ḡj(ỹ0

j ), j = 1, . . . , r. Pick an isotopy L : M × I −→ M (from the identity map
idM to some base point preserving diffeomorphism `ḡ) which pushes y◦j along ci,
i.e. L(y◦j , t) = cj(t), for 1 ≤ j ≤ r. This lifts to an isotopy L̃ from ideM to some
self-diffeomorphism ˜̀̄

g of M̃ satisfying ˜̀̄
g(γỹ0

j ) = γḡj(ỹ0
j ) for all γ ∈ G and

j ≤ r.
Clearly the induced selfmaps `ḡ∗ of the homotopy sets in diagram 2.5 com-

mute with the arrows there. Moreover, `ḡ∗ yields the action of ḡ−1 on the set
[(S(p), ∗), (C̃r(M), y0)].

On the other side consider the effect of `ḡ∗ on (the image [u] = p∗([ũ]) of)
an element [ũ] in the top right hand group in diagram 2.6. ˜̀̄

g ◦ ḡ−1
r ◦ ũ is the

lifting of `ḡ ◦u which maps ∗ to ỹ◦r and which therefore represents the homotopy
class p−1

∗ (`ḡ∗([u])). Its value under c̃g
a, g ∈ Gr−1, is given by the intersections of˜̀̄

g ◦ ḡ−1
r ◦ ũ with the arcs gj ◦ ãj (which start at gj(ỹ◦j ), j = 1, . . . , r−1) or also by

the intersections of ũ with the arcs ḡr ◦ ˜̀−1
ḡ ◦ gj ◦ ãj (which start at ḡrgj ḡ

−1
j (ỹ◦j )).

Hence, for a suitable system ā of arcs we have in 2.6

h ◦ c̃g
a(p−1

∗ (`ḡ∗([u]))) = sign(ḡr)r−1 · h ◦ c̃g′

ā (p−1
∗ ([u])) (3.1)

where g′ = ḡ−1 ∗ g and we define

ḡ ∗ g := (ḡ−1
r g1ḡ1, . . . , ḡ

−1
r gr−1ḡr−1) ∈ Gr−1 (3.2)

whenever ḡ = (ḡ1, . . . , ḡr) ∈ Gr and g = (g1, . . . , gr−1) ∈ Gr−1.
If |p| ≤ r(m − 2), then by proposition 2.15 c̃g′ := c̃g′

ā = c̃g′

a is independent
of any choice of arcs and depends only on the superscript g′ ∈ Gr−1; moreover,
the action of ḡ ∈ Gr on any of the homotopy sets in 2.5 or in the top line of 2.6
corresponds just to the transformation g −→ ḡ ∗ g of the superscripts g ∈ Gr−1

in ⊕h ◦ c̃g, together with multiplication by −1 if ḡr reverses the orientation of
M̃ and r is even. We conclude
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Proposition and Definition 3.3. Assume |p| ≤ r(m− 2). Given any link map
f (as in 1.3) which is κ–Brunnian, pick a base point preserving representative f b

of its link homotopy class. Then the orbit

[
µ̃(f b) =

{
µ̃g(f b)

}]
∈

 ⊕
g∈Gr−1

(πS
∗ )(r−2)!

 /Gr

(w.r. to the action of Gr described above) depends only on the base point free link
homotopy class of f and is called the base point free µ̃–invariant of f .

Corollary 3.4. If in addition M is orientable, then µ(f) (cf. 2.9) depends only
on the base point free link homotopy class of f .

Indeed, in this case the action of Gr leaves µ(f) = ±Σµ̃g(f) invariant (cf.
2.12).

§ 4. Compatibility with linking coefficients

Throughout this section assume that 1 ≤ p1, . . . , pr−1 ≤ m − 2 while pr ≥ 1
is arbitrary unless specified otherwise.

Pick a closed subset A of M as in condition 2.1 and identify it with Rm−1×[0,∞);
after appropriate isotopies we may assume that

y◦j = (j, 0, . . . , 0; 2) ∈
◦
A , j = 1, . . . , r − 1, (4.1)

and y◦r ∈ ∂A. Using a wedge of suitable small m-balls Bj ⊂ A such that y◦j ∈
◦
Bj ,

but y◦j /∈ Bk for j 6= k, 1 ≤ j, k ≤ r − 1, as well as of their boundary spheres
Sm−1

j = ∂Bj , we obtain homotopy equivalences

M ∨
r−1∨
j=1

Sm−1
j ∼ (M −

◦
A) ∨

r−1∨
j=1

Sm−1
j ∼ M − {y◦1 , . . . , y◦r−1} (4.2)

which preserve the common basepoint y0
r and consist of inclusions and deformation

retractions. Thus, in diagram 2.6 we may consider κ′(f) as a homotopy class in

the wedge of M −
◦
A (or of M , resp.) with

∨
Sm−1

j , and (for the choice of arcs
aj(t) := (j, 0, . . . , 0; t + 2) and obvious local orientations) we may interpret ca as
a localization homomorphism since it is induced by the map which collapses the

complement of the open cell
◦
A in M (or all of M , resp.) to a point.

Next, given pj ≤ m− 2, let `j be a base point preserving standard embedding

of Spj into {j}×Rm−2× (0, 2] ⊂
◦
A (with image ej , cf. 4.3), j = 1, . . . , r− 1.

In analogy to 4.2, a suitable choice of corresponding meridians leads to a map

e : M ∨
r−1∨
j=1

S
qj

j ∼ (M −
◦
A) ∨

r−1∨
j=1

S
qj

j
⊂ - M −

r−1∨
j=1

`j(Spj ) (4.4)

where qj := m− pj − 1. Thus given any map `r : Spr −→ M ∨
∨

S
qj

j , we obtain
the link map

e∗(`r) := `1 q · · · q `r−1 q e ◦ `r . (4.5)
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Figure 4.3. The construction of e∗

Example 4.6 (Homotopy Brunnian links). Assume that M = M ′ × R for
some smooth (m−1)–manifold M ′ and that 1 ≤ p1, . . . , pr ≤ m−3. After pushing
two link maps f+, f− suitably into opposite halfspaces M± = M ′ × [0,±∞) we
can form a connected sum f+ + f− with the property that f+ + f− ∼ f+ if f−
is homotopy trivial (cf. 1.7).

Now let f be a link (i.e. embedding) which is homotopy Brunnian (cf. 1.7).
Then after a suitable isotopy the components f1, . . . , fr−1 intersect M− in small
disjoint standard halfspheres. In their complement fr can be deformed into a
wedge of M ′ × {−1} (or, better yet, of M ′ × {0} – open ball) with meridians
S

qj

j ⊂ M−, 1 ≤ j ≤ r − 1 (use Thom isomorphisms and apply the Whitehead
theorem to the universal cover of the link complement). Now perform a (partial)
link nulhomotopy in M+ until f = e∗(fr). In order to insure that [fr] is a
reduced homotopy class add correction terms of the form e∗(−[c ◦ fr]) where c
collapses a (decreasing) number of meridians. Since f is homotopy Brunnian this
iteration procedure does not change the link homotopy class of f which therefore
lies in the image of the reduced homotopy group π′pr

(M ∨
∨

S
qj

j ) under e∗.
(In this example the choice of A is based on a chart of M ′ and on the decompo-

sition M = M ′ × R).

In general for any integer pr ≥ 0 the diagram

π′pr
(M ∨

r−1∨
j=1

S
qj

j , y0
r)

e∗-


b. point pres. link

homotopy classes

of κM -Brunnian

f :
`r

j=1 Spj→M

 κ′M- π′|p|(M ∨
r−1∨
j=1

Sm−1
j , y0

r)

[(S(p), ∗), (M ∨
r−1∨
j=1

Sm−1
j , y0

r)]

quot∗

?

∩

ε
-

(4.7)

relates the homotopy groups (which are reduced w.r. to the spheres S
qj

j and Sm−1
j ,

compare 2.4 and the formula following 2.6) of the spaces in 4.4 (“input”) and
4.2 (“output”). Here the map ε can be interpreted as some kind of (iterated)
nonspherical Nezhinskij suspension (compare e.g. § 7 of [K 5]). It is constructed
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as follows. Given points zj ∈ S
qj

j − {∗}, j = 1, . . . , r − 1, any map `r : Spr −→
M ∨

∨
S

qj

j can be deformed until there are disjoint compact tubular neighborhoods
Tj in Spr of each (m − 1 − pj)–codimensional submanifold Nj = `−1

r (zj) and
`r restricts to

`r| : (T0 := Spr −
r−1⋃
j=1

◦
T j , ∂T0) −→ (M, y◦r ).

In S(p) = Sp1 × · · · × Spr this gives rise to the framed (m − 1)–codimensional
submanifolds

N̂j = Sp1 × · · · × Spj−1 × {−∗j} × Spj+1 × · · · × Spr−1 ×Nj (4.8)

and to the map `r|◦projection on Sp1 ×· · ·×Spr−1 ×T0. These data fit together
and define ε([`r]) via the Pontryagin–Thom construction.

Recall that by a result of D. Puppe the obvious map quot∗ in 4.7 is known to
be injective (see [P], Satz 12, 13, and 20).

Proposition 4.9. For all 0 ≤ p1, . . . , pr−1 ≤ m− 2, pr ∈ Z and M as in 2.1
the composite κ′M ◦ e∗ in 4.7 is characterized by the identity

quot∗ ◦ κ′M ◦ e∗ = invol∗ ◦ ε

where invol = idM ∨
∨

bj is a suitable involution of M ∨
∨

Sm−1
j such that the

selfmap bj of Sm−1
j has degree ±1, j = 1, . . . , r − 1.

Proof. Choose isotopies dyj ,t : M −→ M which

(i) depend smoothly on yj ∈ Spj − {∗} and t ∈ I;
(ii) deform `j(yj) to y◦j along a straight arc in A; and
(iii) leave all points outside of a small neighbourhood of this arc fixed.

Then, given a generic map `r : Spr −→ M ∨
∨

S
qj

j , the homotopy S(p) × I −→
C̃r(M),

(y1, . . . , yr; t) −→ dy1,t ◦ . . . ◦ dyr−1,t (`1(y1), . . . , `r−1(yr−1), e ◦ `r(yr))

deforms the product map k0 of e∗(`r) to a map k1 into M−{y◦1 , . . . , y◦r−1} which,
when composed with the homotopy equivalence in 4.2, represents ε([`r]) (possibly
up to a change of the framings of the (m − 1)–codimensional submanifolds listed
in 4.8). The same procedure allows to deform a nulhomotopy of k0|Xj (cf. 1.7)
to a nulhomotopy of k1|Xj , j = 1, . . . , r. Therefore, if [`r] is reduced, then
[k1] = quot∗([k′]) for some [k′] ∈ π|p|(M − {y◦1 , . . . , y◦r−1}); but for injectivity
reasons, [k′] must equal κ′M(e∗(`r)) (compare 2.5). �

Next let ιj (and ιj , resp.) denote the homotopy class of the inclusion of S
qj

j

into M∨
∨

S
qj

j (and of Sm−1
j into M∨

∨
Sm−1

j , resp.), j = 1, . . . , r−1. Moreover,
for every g ∈ π1(M,y0

r) = G, let gιj and gιj be defined by the canonical action
of G.
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Theorem 4.10. Assume that 1 ≤ p, . . . , pr−1 ≤ m− 2 and pr ≥ 1.
Then the composite map κ′M ◦ e∗ in 4.7 is a group homomorphism.
Furthermore, it is compatible with Whitehead products. More precisely, let w ∈

π′d(M ∨
∨

S
qj

j ) be any Whitehead product which involves at least one factor of
the form gjιj , gj ∈ G, for each j = 1, . . . , r − 1 and possibly further factors
in π∗(M), ∗ ≥ 2; let w ∈ π∗(M ∨

∨
Sm−1

j ) denote the corresponding Whitehead
product with ιj replaced by ιj , j = 1, . . . , r − 1.

If each ιj occurs precisely once in w then the diagram

πpr

(
Sd
) Ep1+···+pr−1

−−−−−−−−→ π|p|
(
Sd+p1+···+pr−1

)yw∗

yw∗

π′pr

(
M ∨

r−1∨
j=1

S
qj

j

)
κ′M ◦ e∗−−−−−→ π′|p|

(
M ∨

r−1∨
j=1

Sm−1
j

)

commutes up to a ± sign; here E denotes suspension.
If for some 1 ≤ j0 ≤ r − 1 more than one factor of the form g · ιj0 , g ∈ G,

occurs in w, then the homomorphism κ′M ◦ e∗ ◦w∗ is trivial.

Thus κ′M ◦ e∗ ◦w∗ = ±w̄∗ ◦E|p|−pr whenever the dimensions of w̄ and w differ
by |p| − pr; otherwise κ′M ◦ e∗ ◦w∗ = 0.

Proof. We may assume in 4.5 that each `j(Spj ) ⊂ A is symmetric w.r. to a hy-
perplane H which contains all the base points and chosen meridians. Given
`+, `− ∈ π′pr

(M ∨
∨

S
qj

j ), consider e∗(`+ +`−). In the summand e ◦ `+ (and e ◦ `−)
move the meridian S

qj

j to the positive (and negative, resp.) side of H; then
pinch the equator `j(Spj )∩H to a point. Thus κb

M ◦ e∗(`+ + `−) factors through∏
(Spj

+ ∨ S
pj

− ) and is nulhomotopic on each of the subtori except on
∏

S
pj

+ and∏
S

pj

− . A cell-by-cell argument shows that

κ′M ◦ e∗(`+ + `−) = κ′M ◦ e∗(`+) + κ′M ◦ e∗(`−) .

Next, given 1 ≤ j ≤ r − 1, consider a subproduct of w of the form

v = ±[ιj , u], u ∈ πn(M ∨
∨
i 6=j

Sqi

i ) .

Geometrically v can be described by
(i) a framed standard sphere Nj = Sn−1 ⊂ Rqj+n−1, and
(ii) the composite map

∂Bqj × Rn projection−−−−−−→ Rn ⊂ Sn u−→ M ∨
∨
i 6=j

Sqi

i

defined on a small tubular neighbourhood of the meridian ∂Bqj , where Bqj de-
notes a qj–ball normal to Nj and with center at some point z ∈ Nj .

Now apply the ε–construction (w.r. to products with Spj , cf. 4.8) to v and
compare the result to the analogous geometric description of v = ±[ιj , u] in
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R(m−1)+n−1 ⊂ Rqj+n−1 × Spj . Remove the interior of a small ball Bm−1 around
(z,−∗j) from Bqj × Spj to obtain a framed link bordism (in Rqj+n−1 × Spj × I)
which allows us to replace ∂Bqj × Spj by ∂Bm−1 in (ii) above while leaving Nj

unchanged.
If v = ±gιj , g ∈ G, the ε-construction on v is related to v = ±gιj in a similar

way.
In any case, whether ±v equals [ιj , u] or gιj , our bordism can be used fiberwise

in suitable product situations (for the fiberwise geometric interpretation of iterated
Whitehead products etc. compare [K 5], p. 308–309, e.g. (17)). Since the support
of v lies in a (small) cell, we can apply the same argument to the product of v
with the next factor which occurs in w, provided this factor does not involve ιj .

To prove the commutativity claim in 4.10 we iterate this procedure w.r. to all
factors in w and w.r. to all j. We conclude that (in the notation of 4.7 and 4.9)

quot∗(κ′M ◦ e∗(w)) = invol∗ ◦ ε(w) = quot∗(±w̄).

Moreover recall that elements of πpr (S
d) correspond – up to bordism – to open

embeddings of the form Q×Rd ⊂ Rpr . Again we apply our construction fiberwise
to every normal slice and we use the fact that quot∗ is injective to obtain finally
the desired commutativity.

In this proof we need only one Whitehead factor gjιj for each 1 ≤ j ≤ r − 1
in order to substitute Spj by a small cell cj around −∗j and thus to describe
(quot∗)−1 ◦ ε (compare 4.7). Now suppose that some ιj occurs at least twice in w,
i.e. w contains a subproduct of the form [v1, v2] where both v1 and v2 involve ιj
precisely once. Then in the construction of ε([v1, v2]) the support of each factor vi

may be assumed to lie in the product of a small cell c
(i)
j ⊂ Spj with the remaining

spheres. We may shift these cells to disjoint Spj –levels; then at each such level
ε[v1, v2] can be described by a Whitehead product with a trivial factor. We obtain
a nulbordism which can again be used fiberwise to show that ε ◦w∗ and hence
κ′M ◦ e∗ ◦w∗ must be trivial (compare proposition 4.9). �

Now suppose |p| ≤ r(m − 2) (so that we have e.g. 2.15 at our disposal). If in
the discussion above w is just a Whitehead product of r − 1 factors of the form
g1ι1, . . . , gr−1ιr−1, all gj ∈ G, then Ep1+···+pr−1 is the stable suspension on the
domain of w∗; more importantly, κ′M ◦ e∗ ◦w∗ is detected by h̃ ◦ (⊕c̃g

a) ◦ p−1
∗ (cf.

2.6 and the remarks following 4.2) and hence µ̃M is just as strong as κ′M on the
image of e∗ ◦w∗. However, if w involves all ιj and an additional factor gιj or
b ∈ πn(M), n ≥ 2, then µ̃M ◦ e∗ ◦w∗ ≡ 0.

As a consequence we see that in general κ′M can be strictly stronger than µ̃M .

Example 4.11. Suppose that for some continuous map g : M −→ Sn and some
b ∈ πn(M), 2 ≤ n ≤ m − 2, the homotopy class g∗(b) ∈ πn(Sn) is nontrivial.
Consider the Whitehead product

w = [`r] = [ι1, [ι2, . . . , [ιr−1, b] . . . ]] ∈ π′d(M ∨
r−1∨
j=1

S
qj

j ) .

Then the κM–Brunnian link map

e∗(`r) :
r−1∐
j=1

S
pj

j q Sd −→ M
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(cf. 4.5) has trivial µ̃–invariant but κ′M(e∗(`r)) = ±w 6= 0. Indeed, when suitably
mapped to the wedge Sn ∨

∨
Sm−1

j , w is nontrivial there (see e.g. [K 5], 3.1).

According to the last claim in theorem 4.10 the product map f̂ (cf. 1.4) often
allows a (standard) nulhomotopy. When can this be induced by a link nulhomotopy?

Conjecture 4.12. Let w ∈ π′d(M ∨
∨

Sqj ) be a Whitehead product as in 4.10
containing two factors of the form gιj0 , g

′ιj0 for some 1 ≤ j0 ≤ r − 1. Then for
every u ∈ πpr

(Sd) the link map e∗(w∗(u)) is trivial.

Here is a partial result in this direction.

Proposition 4.13. Let w ∈ πd(M∨
∨

Sqj ) be a Whitehead product which contains
a subproduct of the form [gιj , g

′ιj ], g, g′ ∈ G, for some 1 ≤ j ≤ r − 1. Assume
p1, . . . , pr ≤ m− 2.

Then for any two elements v1, v2 ∈ πpr (M ∨
∨

Sqj ) such that v1 − v2 ∈
w∗(πpr (S

d)) we have
e∗(v1) = e∗(v2).

Proof. By finger moves along suitable paths we can isotop two small portions of
`j(Spj ) (together with the meridians gιj and g′ιj) until they face each other
“perpendicularly” as in the proof of theorem 2.5 in [K 2]. Then, after a selfinter-
section of fj , the Whitehead product of the two meridians becomes nulhomotopic.
In other words, we may replace the subproduct [gιj , g

′ιj ] of w by 0. Since
pr ≤ m − 2, such deformations of fj and fr do not intersect the remaining
(generic) components of e∗(v1) or e∗(v2). �

Example 4.14. If r = 2, p1 ≤ m−3, p2 ≤ m−2 and M̃ is p2-connected, then
e∗ kills all higher Hilton summands in

π′p2
(M ∨ Sq1) ∼= π′p2

(M̂ ∨ Sq1) ∼= πp2(
∨
g∈G

Sq1
g ) ∼=

⊕
g∈G

πp2(S
q1
g )⊕ . . .

whereas the first order, πp2(S
q1
g )-valued components of the linking coefficients are

detected, up to stable suspension, by µ̃.
In the very special case when M = RP 5 × R there are precisely 4 (or 3, resp.)

base point preserving (or base point free, resp.) homotopy classes of link maps
f : S3 q S4 −→ M which embed S3, and they are fully determined by µ̃.
Similarly, when M = (S1)5 × R there are infinitely many such homotopy classes,
again distinguished by µ̃. What about general link maps where f1 may be a
(selftransverse) immersion? How many additional link homotopy classes can be
detected by a “Kirk-invariant” (compare [Ki]) which counts the double points of
f1 and measures their linking behaviour with respect to f2?

§ 5. Link maps with codimensions at least 2

Throughout this section we assume that p1, . . . , pr ≤ m − 2. This implies, in
particular, that |p| ≤ r(m − 2) and proposition 2.15 applies. Moreover, a link
map f (as in 1.3) is κM–Brunnian if (and only if) each proper sub-link map
of f is κM–trivial (cf. 1.7); indeed, after a small deformation the sub-link map
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ϕj = f1 q · · · q fj−1 q fj+1 q · · · q fr misses a path which moves fj(∗j) to a
“faraway point” (lying outside of the componentwise images of a nulhomotopy of
ϕ̂j , cf. 1.4).

Here is another important consequence of our dimension assumption. Without
gain or loss of information the (open) manifold M can be punctured at the points
of a closed discrete subset D ⊂ M − {y◦1 , . . . , y◦r}: link maps into M − D and
into M (considered up to link homotopy) correspond bijectively to one another
via the inclusion map incl, and this correspondence is compatible with κ, µ– and
µ̃–invariants.

Proposition 5.1. In the situation above let f, f ′ : qSpj −→ M −D be two link
maps. Then both in the base point preserving and in the base point free setting f
and f ′ have equal κM−D–invariants if (and only if) incl ◦ f and incl ◦ f ′ have
equal κM–invariants.

Proof. After an approximation we may assume that f and f ′ are generic immer-
sions. Let F = (F1, . . . , Fr) be a homotopy in C̃r(M) which joins their product
maps f̂ and f̂ ′. Then S :=

⋃
Fj(S(p)× I) intersects D only in a finite set {dk}.

Pick suitable disjoint arcs ak which start in {dk} and end at some “faraway
points” {ck} ⊂ M − S. An isotopy in small tubular neighbourhoods along these
arcs yields a diffeomorphism b which maps {dk} to {ck} and leaves f and f ′ as
well as all other points of D unchanged. Composing F with b−1 we obtain the
desired homotopy from f̂ to f̂ ′ in C̃r(M −D).

Corollary 5.2. A link map f : qSpj −→ M −D is κM−D–Brunnian if and only
if incl ◦ f is κM–Brunnian; if this condition holds, then the µ̃–invariants of f and
incl ◦ f coincide both in the base point preserving and base point free setting.

Remark 5.3. Whenever p1, . . . , pr ≤ m − 2, the previous discussion allows us to
extend our construction of µ- and µ̃-invariants to the case when M does not
necessarily satisfy condition 2.1 (e.g. when M is a closed manifold). Indeed,
choose any nonempty closed discrete subset D ⊂ M−{y0

1 , . . . , y0
r} (e.g. consisting

of a single point) and deform a (suitable) link map f in M until it misses D
(and is κM−D-Brunnian). Both in the base point preserving and in the base point
free setting this procedure yields well defined link homotopy invariants

µM(f) := µM−D(f) and µ̃M(f) := µ̃M−D(f)

which are independent of the choice of the set D where M is punctured.

Next we turn to the central question asked in the introduction (for M satisfying
condition 2.1): how much information do we loose by the simplification procedure
which extracts the µ̃–invariant out of the unwieldy κ–invariant of a (base point
preserving) κM–Brunnian link map f in M ?

On one hand κb
M(f) is precisely as strong as the element

κ̃′M(f) ∈ π′|p|(C̃) :=
r−1⋂
j=1

ker(fĩllj∗) (5.4)

where C̃ denotes the universal covering space of

C := M ∨
r−1∨
j=1

Sm−1
j ∼ M − {y0

1 , . . . , y0
r−1}
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and fĩllj collapses each lifting of Sm−1
j to a point (compare 2.5, 2.6, 4.2, and

2.10). On the other hand, µ̃M(f) is equal – up to the isomorphism h̃ (cf. 2.6 and
2.15) – to the value of κ̃′M(f) under the total homomorphism

c :=
⊕

g∈Gr−1

c̃g : π′|p|(C̃) −→
⊕

g∈Gr−1

π′|p|

r−1∨
j=1

Sm−1
j

 (5.5)

where for g = (g1, . . . , gr−1) c̃g is induced by collapsing all but the gj-lifting
of Sm−1

j , j = 1, . . . , r − 1. Therefore, our question amounts to asking how much
information we lose by applying c. Often (though certainly not always, see e.g.
4.11 and 5.9) the answer is: none at all.

Theorem 5.6. Assume M̃ is (m − 2)–connected and p1, . . . , pr ≤ m − 2 and
let f : qSpj −→ M be a κM–Brunnian link map. Then both in the base point
preserving and in the base point free setting the κM–invariant of f (i.e. κb

M(f)
or κM(f), resp.) contains precisely as much information as the µ̃M–invariant ( as
defined in 2.11 or 3.3, resp.).

Proof. Choose a triangulation of M (cf. [Mu], 10.6) and let D be the set consisting
of the barycenters of all m–simplices. It suffices to prove the injectivity of the total
collapsing homomorphism c as in 5.5, but with M replaced by Ṁ := M −D.

Now ˜̇M is (m−2)–connected and – since it contains the (m−1)-skeleton as a
deformation retract – has a free (m− 1)–dimensional homology group. Therefore,
by the Hurewicz and Whitehead theorems, there are (homology and hence) weak
homotopy equivalences of the form∨

k∈K

Sm−1
k −→ ˜̇M

and similarly ∨
k∈K

Sm−1
k ∨

r−1∨
j=1

∨
gj∈G

Sm−1
j,gj

−→ ˜̇C . (5.7)

Thus the domain of c is essentially the reduced |p|–dimensional homotopy group
of the big wedge of spheres in 5.7; its Hilton decomposition (cf. [Hi]) is given by basic
Whitehead products which for each j = 1, . . . , r − 1 must involve a sphere Sm−1

j,gj

for some covering transformation gj ∈ G (compare 5.4). But since |p| ≤ r(m− 2),
the remaining spheres Sm−1

k cannot occur at all. Therefore c just has the domain

π′|p|

(
∨ ∨ Sm−1

j,gj

)
and is seen to be an isomorphism. �

Example 5.8 (Spherical space forms). Let G be a finite group acting freely
and smoothly on Sm. Then for κ-Brunnian link maps into the punctured orbit
manifold M = (Sm/G) − {x◦} the κ– and µ̃–invariants are equally strong. In
particular, every embedded codimension–2 link f :

∐r
Sm−2 ↪→ M is at least

κM -trivial whenever m ≥ 4; indeed, by a deep theorem of A. Bartels [B] all its
liftings f̃g (cf. 2.16) are link homotopy trivial in Sm.

In the case of punctured projective space M = RPm − {x◦}, the claim of
theorem 5.6 can be deduced directly at the various steps of the construction of µ̃.
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Indeed, M − {y◦1 , . . . , y◦r−1} ∼ RPm−1 ∨
∨r−1

Sm−1
j ; moreover, ⊕c̃g (cf. 2.6) is

just induced by the obvious collapsing maps

M̃ −
r−1⋃
j=1

p−1{y◦j } ∼ Sm−1 ∨
∨

Sm−1
j,+ ∨

∨
Sm−1

j,− −→
∨

Sm−1
j

and is therefore bijective on the reduced |p|–dimensional homotopy groups.

Next we observe that the assumption of high connectivity in theorem 5.6 cannot
be dropped (compare also 4.11).

Example 5.9 (Higher dimensional Borromean links). Assume 1 ≤ n ≤
m − 2. Let Sn ⊂ Rn+1 be included in Sm−1 ⊂ Rm in the standard fashion.
Identify a tubular neighbourhood of Sn in Rm with Sn × Rm−n. Also let
B2 ⊂ B1 ⊂ Sm−1 be suitably embedded small compact (m − 1)–balls whose

center lies in Sn and such that B2 ⊂
◦
B1.

Now define a link

f = f1 q f2 : Sm−2 q Sn ↪→ M := Sn × Rm−n

as follows. f1 is the inclusion of ∂B1
∼= Sm−2. f2 is obtained by “doubling” the

n–ball D = Sn − (Sn ∩
◦
B2): push D in Rn+1 a little towards (and away from,

resp.) the origin to obtain two embedded balls D− and D+ which meet along
their boundaries and together constitute the n–sphere f2(Sn).

Figure 5.10. The links f and f (1)

Clearly f is homotopy (and even isotopy) trivial in Rm : deform first D−
towards the center of B2 and then f1 towards the origin. In particular µM(f) =
µRm(f) = 0 (compare 2.14).

On the other hand, f is not κM–trivial in M = Sn × Rm−n. Indeed, a
nulhomotopy of the product map f̂ in C̃2(M) would induce a nulhomotopy of
the product map f̂ (1) of

f (1) := ez q f : Sm−n−1 q Sm−2 q Sn −→ Rm

(where ez is a large meridian of Sn ⊂ Rm at some suitable point z ∈ Sn, cf.
figure 5.10). But f̂ (1) is projectable and therefore µRm(f (1)) equals the linking
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number ±1 of an equator in Sn with a pair of antipodal points (by [K 5], theorem
5.2 and the arguments in the proof of theorem 6.1).

If n = 1, M̃ ∼= Rm and theorem 5.6 applies: the nontriviality of κM(f) must
be detected by µ̃M(f) (though not by µM(f)). (Also note that in the special case
m = 3 f (1) is the classical Borromean link).

If 2 ≤ n ≤ m − 2, M̃ ∼ Sn is not (m − 2)–connected and κM(f) is strictly
stronger than µ̃M(f) = µM(f) = 0.

For a systematic comparison of κ- and µ-invariants in Sn × Rm−n see [K 6].

§ 6. The classical dimension setting

Throughout this section we assume the manifold M to be 3–dimensional and
oriented. We will consider link maps of the form

f =
r∐

j=1

fj :
r∐

j=1

S1 −→ M

and reinterpret results of J. Milnor and U. Dahlmeier to show that in many signifi-
cant cases the link homotopy class [f ] of f is fully characterized by κM(f) or even
by the invariant µ̃M(f) which lies in (a quotient of) the group ring J(Gr−1×Σr−2)
(since πS

0 = Z).
In order to construct an inverse of µ̃M along the lines of Milnor’s work [M] and

our § 4, pick a compact 3-ball B ⊂ M which contains the base points y◦1 , . . . , y◦r−1

in its interior
◦
B and y◦r in ∂B. Let L = `1 q · · · q `r−1 ⊂

◦
B be a trivial (base

point preserving) link consisting of the standard circles in r − 1 parallel planes
and let a1, . . . , ar−1 denote meridians (in B and starting at y◦r ) of L (compare
[M 1], p. 181, and our figure 4.3). Now, given an element

(g = (g1, . . . , gr−1), γ = (i1, . . . , ir−2)) ∈ Gr−1 × Σr−2 ,

define ϕ0, . . . , ϕr−2 ∈ π1(M −
◦
B; y◦r ) ∼= G by ϕ0 = gi1 , ϕr−2 = g−1

ir−2
gr−1 and

ϕj = g−1
ij

gij+1 for j = 1, . . . , r − 3 ; (6.1)

furthermore, just as in [M 1], p. 185, the resulting element

s(g, γ) = ϕ0(ai1 − 1)ϕ1(ai2 − 1)ϕ2 . . . ϕr−3(air−2 − 1)ϕr−2 (6.2)

in the group ring J(π1(M − L)) gives rise to some product a
s(g,γ)
r−1 ∈ π1(M − L)

of conjugates of the meridian ar−1 (at this stage such a product still depends on
the chosen order of its factors). By extension, every element χ ∈ J(Gr−1 × Σr−2)
yields a

s(χ)
r−1 ∈ π1(M − L) and hence a link homotopy class

e(χ) =
[
`1 q · · · q `r−1 q a

s(χ)
r−1

]
.

The following result is essentially due to J. Milnor.
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Theorem 6.3. The construction above determines a welldefined map e from the
group ring of Gr−1 × Σr−2 onto the set of base point preserving link homotopy
classes of all homotopy Brunnian link maps f :

∐r
S1 −→ M .

Proof. Milnor’s basic link homotopy (cf. [M 1], p. 183) allows to eliminate any
commutator of conjugates of ar−1 in the product a

s(χ)
r−1 ; hence e(χ) does not

depend on how these factors are ordered.
Next let the generic base point preserving link map f be homotopy Brunnian.

Then there exists a base point preserving link homotopy from f1 q · · · q fr−1 to
L which can be decomposed into ambient isotopies on one hand and, on the other
hand, local crossing changes of arcs from the same link component; clearly, this
can be extended to a link homotopy from f to a link map of the form L q f ′r
(compare e.g. [L], p. 363–364, or [D], p. 2).

Now use the results and terminology of Milnor [M 1]. By his corollary 1 (p. 182),
the class of f ′r in the link group G(L) lies already in the kernel Aj , j = 1, . . . , r−1.
It then follows from theorems 5 and 7 and again corollary 1 that [f ′r] can be
expressed in precisely one way in the form [ar−1]s where s = Σ ± s(gkγk) is a
sum of “canonical words” as in 6.2 above. Milnor’s theorem 3 (and its proof) now
implies our surjectivity claim. �

Theorem 6.4. Up to a fixed sign µ̃M◦e is the identity on the group ring of Gr−1×
Σr−2. Hence ±µ̃M defines a bijection (inverse to e ) from the base point preserving
link homotopy set of classical homotopy Brunnian link maps in M onto J(Gr−1×
Σr−2).

Proof. Given χ ∈ J(Gr−1 × Σr−2) and (g′, γ′) ∈ Gr−1 × Σr−2, the γ′–part

of µ̃M,g′(e(χ)) is the µeM,γ′–invariant of the g′–lifting ẽ(χ)
g′

of e(χ) (see
corollary 2.16). Now this link map in M̃ consists of the small unlinked circles
g′1 ◦

˜̀
1 q · · · q g′r−1 ◦

˜̀
r−1 and of the standard lifting f̃r of fr = a

s(χ)
r−1 . Thus we

can apply proposition 2.20 and obtain

µ̃M,g′,γ′(e(χ)) = µeM,γ′(ẽ(χ)
g′

) = ±hγ′(b) ;

here b is the “link map” qNj ⊂ R formed by those isolated points in the domain
of f̃r where f̃r intersects a small ball bounded by g′j ◦ ˜̀j , j = 1, . . . , r − 1
(see 2.18). If a summand (g, γ) ∈ Gr−1 × Σr−2 of χ and the corresponding
summand s(g, γ) of s(χ) (see 6.2) is to contribute to hγ′(b) then γ must equal
γ′ (compare [K 5], top of p. 315). Similarly, only the “principal part”

s = ϕ0ai1ϕ1ai2 . . . air−2ϕr−2

of s(g, γ) (compare 6.2) is relevant for the calculation of hγ′(b). Now note that
s lifts to a path s̃ in M̃ which first proceeds from ỹ◦r to ϕ0(ỹ◦r ) = gi1(ỹ

◦
r ),

then traverses the meridian gi1(ãi1), then goes on to ϕ0ϕ1(ỹ◦r ) = gi2(ỹ
◦
r ), traverses

gi2(ãi2) etc. until it reaches ϕ0ϕ1 . . . ϕr−2(ỹ◦r ) = gr−1(ỹ◦r ) (compare 6.1). Therefore
as

r−1 = sar−1s
−1 (cf. [M 1], p. 185) lifts to s̃(gr−1(ãr−1))s̃−1 and contributes to

the intersection Nj precisely if the meridian gj(ãj) links the component g′j ◦
˜̀
j
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of ẽ(χ)
g′

, i.e. if gj = g′j , j = 1, . . . , r − 1. We conclude that, up to a sign, hγ′(b)
is just the coefficient of (g′, γ′) in χ. �

By induction (over the number of components in sublinks) the conclusion of
theorem 6.4 allows to re-express its assumption: a classical link map in M is
homotopy Brunnian if and only if it is κM–Brunnian (cf. 1.7). Similarly we obtain

Corollary 6.5. For any link map f =
∐

fj :
∐r

S1 −→ M3 the following condi-
tions are equivalent:

(i) f is link homotopically trivial;
(ii) κM(f) is trivial; and
(iii) each component map fj is nulhomotopic in the usual sense, 1 ≤ j ≤ r, and

all (successively defined) µ̃M–invariants of all sub-link maps of f (proper
or not) vanish.

(Note that for each of these statements the base point preserving and base point
free versions are also equivalent.)

For example, if a classical link which lies in a 3–ball B ⊂ M is link homotopically
trivial in M then also already in B; in other words, the extra space M − B is
not needed for the nulhomotopy. This consequence of the compatibility of the µ-
invariants in B and in M was pointed out to me by G.S. Li; in case M is
simply connected, it follows also from [H].

Corollary 6.6. Both in the base point free and base point preserving setting the
κM–invariant characterises κM–Brunnian classical link maps completely up to link
homotopy.

This was conjectured by U. Kaiser.

Question 6.7. When does κM classify all classical link maps?

The following sample answer is a consequence of the complete classification re-
sults in [D].

Proposition 6.8 (U. Dahlmeier). If M = S1×R2 or M = RP 3–{point}, then
κM characterises arbitrary classical link maps with two components completely up
to base point free link homotopy.

Proof. Let f = f1 q f2 and f ′ = f ′1 q f ′2 be link maps S1 q S1 −→ M with
equal κ–invariants.

If M = S1 × R2, the winding numbers of fj and f ′j agree, j = 1, 2, and so
does their greatest common denominator d. Now lift f and f ′ (as well as the
homotopy between the product maps f̂ and f̂ ′) to link maps f̃ and f̃ ′ in the

connected d–fold covering space M̃d of S1 × R2 in such a way that ̂̃f ∼ ̂̃f ′. Then
the linking numbers of f̃ and f̃ ′ in M̃d ⊂ R3 agree, and similarly for f̃1q gf̃2 and
f̃ ′1 q gf̃ ′2, where g is any covering transformation. But according to theorem I in
[D], these linking numbers determine f and f ′ up to link homotopy.

If M is a punctured projective 3–space, again the winding numbers of fj and
f ′j agree, and so do the linking numbers in the sense of Seifert–Threlfall (which by
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theorem II in [D] classify the link maps f and f ′ when they are not κ–Brunnian).
Indeed, these linking numbers are suitably compatible both with precomposing f, f ′

by degree −2 selfmaps of S1 and with liftings, and so are homotopies of the product
maps f̂ , f̂ ′.
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