SELFCOINCIDENCES IN HIGHER CODIMENSIONS

Ulrich Koschorke *

ABSTRACT. When can a map between manifolds be deformed away from itself? We describe a (normal bordism) obstruction which is often computable and in general much stronger than the classical primary obstruction in cohomology. In particular, it answers our question completely in a large dimension range.

As an illustration we give explicit criteria in three sample settings: projections from Stiefel manifolds to Grassmannians, sphere bundle projections and maps defined on spheres. In the first example a theorem of Becker and Schultz concerning the framed bordism class of a compact Lie group plays a central role; our approach yields also a very short geometric proof (included as an appendix) of this result.

I. Introduction

Throughout this paper M and N denote smooth connected manifolds without boundary, of dimensions m and n, resp., M being compact. We say a map $f: M \longrightarrow N$ is loose (or $f | \wr f$ in the notation of Dold and Gonçalves [DG]) if fis homotopic to some map f' which has no coincidences with f, i.e. $f(x) \neq f'(x)$ for all $x \in M$.

Problem: Give strong and computable criteria (expressed in a language of algebraic topology) for f to be loose.

In this paper we present some results and examples which seem to indicate that normal bordism theory offers an appropriate language. Indeed, a careful analysis of the coincidence behaviour (of a suitable approximation) of $(f, f) : M \longrightarrow N \times N$ yields a triple (C, g, \overline{g}) where

- (i) C is a smooth (m-n)-dimensional manifold (the coincidence locus);
- (ii) $g: C \longrightarrow M$ is a continuous map (the inclusion); and
- (iii) \overline{g} is a vector bundle isomorphism which describes the stable normal bundle of C in terms of the pullback $g^*(\varphi)$ of the virtual coefficient bundle $\varphi = f^*(TN) - TM$ over M.

This leads to a well-defined looseness obstruction

$$\omega(f) := [C, g, \overline{g}] \in \Omega_{m-n}(M; f^*(TN) - TM)$$

in the normal bordism group which consists of the bordism classes of triples as above.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55 M 20, 55 S 35, 57 R 90, 57 S 15.

Key words and phrases. Normal bordism; coincidence invariant; singularity obstruction; framed Lie group.

^{*} Supported in part within the German-Brazilian Cooperation by IB-BMBF.

Selfcoincidence theorem. Assume m < 2n - 2. Then f is loose if and only if $\omega(f) = 0$.

This is our central result. In § 2 below we give the proof which is based on the singularity theory for vector bundle morphisms (see [Ko 1]). As a by-product we show also that if the map f can be homotoped away from itself, then this can be achieved by an arbitrarily small deformation. Furthermore we obtain a formula expressing $\omega(f)$ in terms of the Euler number $\chi(N)$ of N and of the (normal bordism) degree of f. Often this makes explicit calculations possible.

The natural Hurewicz homomorphism maps our invariant $\omega(f)$ to the Poincaré dual of the classical primary obstruction $o_n(f, f)$ in the (co-)homology of M (in general with twisted coefficients; compare [GJW], theorem 3.3). This transition forgets the vector bundle isomorphism \overline{g} nearly completely, keeping track only of the orientation information it carries. If m = n, this is no loss. However, in higher codimensions m - n > 0 the knowledge of \overline{g} is usually crucial.

Example. Consider the canonical projections

$$p: V_{r,k} \longrightarrow G_{r,k} \quad \text{and} \quad \widetilde{p}: V_{r,k} \longrightarrow \widetilde{G}_{r,k}$$

from the Stiefel manifold of orthonormal k-frames in \mathbb{R}^r to the Grassmannian of (unoriented or oriented, resp.) k-planes through the origin in \mathbb{R}^r .

Then $\omega(p) = \omega(\tilde{p})$ lies in the framed bordism group $\Omega_{d(k)}^{fr}(V_{r,k})$ where $d(k) = \frac{1}{2}k(k-1)$. In nearly all interesting cases the map g from the coincidence locus C into $V_{r,k}$ factors – up to homotopy – through a lower dimensional manifold so that the primary obstruction vanishes. Frequently g is even nulhomotopic.

Theorem. Assume $r \ge 2k \ge 2$. Then: p and \tilde{p} are loose if and only if

$$0 = 2\chi(G_{r,k}) \cdot [SO(k)] \in \pi^S_{d(k)}$$

This condition holds e.g. if k is even or k = 7 or 9 or $\chi(G_{r,k}) \equiv 0(12)$.

Here a fascinating problem enters our discussion: to determine the order of a Lie group, when equipped with a left invariant framing and interpreted – via the Pontryagin-Thom isomorphism – as an element in the stable homotopy group of spheres $\pi_*^S \cong \Omega_*^{fr}$. Deep contributions were made e.g. by Atiyah and Smith [AS], Becker and Schultz [BS], Knapp [Kn], and Ossa [O], to name but a few (consult the summary of results and the references in [O]). In particular, it is known that the invariantly framed special orthogonal group SO(k) is nulbordant for $4 \le k \le 9, k \ne 5$ (cf. table 1 in [O]) and that 24[SO(k)] = 0 and $2[SO(2\ell)] = 0$ for all k and ℓ (cf. [O], p. 315, and [BS], 4.7; for a short proof of this last claim see also our appendix).

On the other hand, the Euler number $\chi(G_{r,k})$ is easily calculated: it vanishes if $k \neq r \equiv 0(2)$ and equals $\binom{[r/2]}{[k/2]}$ otherwise (compare [MS], 6.3 and 6.4).

Corollary 1. Assume r > k = 2. Then p and \tilde{p} are loose.

Corollary 2. Assume $r \ge k = 3$. Then p (or, equivalently, \tilde{p}) is loose if and only if r is even or $r \equiv 1(12)$.

This follows from the fact that $[SO(3)] \in \pi_3^S \cong \mathbb{Z}_{24}$ has order 12 (cf. [AS]).

Corollary 3. Assume $r \ge k = 5$, $r \ne 7$. Then p (or, equivalently, \tilde{p}) is loose if and only if $r \ne 5(6)$.

This follows since [SO(5)] has order 3 in $\pi_{10}^S \cong \mathbb{Z}_6$ (cf. [O]). The details of this example will be discussed in § 3.

Next consider the case when a map $f: M \longrightarrow N$ allows a section $s: N \longrightarrow M$ (i.e. $f \circ s = \mathrm{id}_N$). Then clearly f is loose if and only if id_N is – or, equivalently, $\chi(N) = 0$ whenever N is closed. In § 4 we refine this simple observation in case fis the projection of a suitable sphere bundle $S(\xi)$. Here the relative importance of the g- and \overline{g} -data (fibre inclusion and "twisted framing") in $\omega(f)$ can be studied explicitly via Gysin sequences. We obtain divisibility conditions for $\chi(N)$ in terms of the Euler class of ξ .

As a last illustration we discuss the case $M = S^m$ in § 5. Our looseness obstruction determines (and is determined by) a group homomorphism

$$\omega : \pi_m(N; y_0) \longrightarrow \Omega_{m-n}^{fr}$$

Thus when m < 2n - 2 a map $f: S^m \longrightarrow N$ is loose precisely if its homotopy class [f] lies in the kernel of this homomorphism. In the case $N = S^n$ this holds if 2[f] = 0 (when n is even) and for all f (when n is odd).

Acknowledgement. It is a pleasure to thank *Daciberg Gonçalves* for a question which raised my interest in coincidence problems and for very stimulating discussions.

\S 1. The coincidence invariant and the degree

Consider two maps $f_1, f_2: M \longrightarrow N$.

If the resulting map $(f_1, f_2) : M \longrightarrow N \times N$ is smooth and transverse to the diagonal

$$\Delta := \{ (y, y) \in N \times N \mid y \in N \}$$

then the coincidence locus

(1.1)
$$C := \{x \in M \mid f_1(x) = f_2(x)\} = (f_1, f_2)^{-1}(\Delta)$$

is a closed (m-n)-dimensional manifold canonically equipped with the following two data:

a continuous map

(1.2)
$$g: C \longrightarrow M$$
 (namely the inclusion) ; and

a stable tangent bundle isomorphism

(1.3)
$$\overline{g} : TC \oplus g^*(f_1^*(TN)) \cong g^*(TM)$$

(since the normal bundle $\nu(\Delta, N \times N)$ of Δ in $N \times N$ is canonically isomorphic to the pullback of the tangent bundle TN under the first projection p_1).

If f_1 and f_2 are arbitrary continuous maps, apply the preceding construction to a smooth map (f'_1, f'_2) which approximates (f_1, f_2) and is transverse to Δ . Then a (sufficiently small) homotopy from f_1 to f'_1 determines an isomorphism $f_1^*(TN) \cong f'_1(TN)$ which is canonical up to regular homotopy. In any case we obtain a well-defined normal bordism class

(1.4)
$$\omega(f_1, f_2) := [C, g, \overline{g}] \in \Omega_{m-n}(M; f_1^*(TN) - TM)$$

which depends only on f_1 and on the homotopy class of f_2 .

Proposition 1.5. If there exist maps $f'_i : M \longrightarrow N$ which are homotopic to $f_i, i = 1, 2$, and such that $f'_1(x) \not\equiv f'_2(x)$ for all $x \in M$, then $\omega(f_1, f_2) = 0$.

Proof. The homotopy $f_1 \sim f'_1$ yields a nulbordism for $\omega(f_1, f'_2) = \omega(f_1, f_2)$.

Our approach also leads us to define the (normal bordism) degree of any map $f: M \longrightarrow N$ by

(1.6)
$$\deg(f) := \omega(f, \text{constant map}) .$$

It is represented by the inverse image F of a regular value of (a smooth approximation of) f, together with the inclusion map and the obvious stable description of the tangent bundle TF.

§ 2. Selfcoincidences

Given any continuous map $f: M \longrightarrow N$, we apply the previous discussion to the special case $f_1 = f_2 = f$. We obtain the two invariants

(2.1)
$$\omega(f) := \omega(f, f), \quad \deg(f) \in \Omega_{m-n}(M; f^*(TN) - TM)$$

(cf. 1.4 and 1.6), both lying in the same normal bordism group.

Any generic section s of the vector bundle $f^*(TN)$ over M gives rise to a map (which is homotopic to f) from M to a tubular neighbourhood $U \cong \nu(\Delta, N \times N) \cong$ $p_1^*(TN)$ of the diagonal Δ in $N \times N$ (compare 1.3). The resulting coincidence locus, together with its normal bordism data, equals the zero set of s (interpreted as a vector bundle homomorphism from the trivial line bundle \mathbb{R} to $f^*(TN)$), together with its singularity data (cf. [Ko 1]). This locus consists of $f^{-1}\{y_1,\ldots\}$ if s is the pullback of a generic section of TN with zeroes $\{y_1,\ldots\}$, which are regular values of (a smooth approximation of) f. In particular, if N admits a nowhere zero vector field v – e.g. when N is open – then the map f is loose (since it can be "pushed slightly along v" to get rid of all selfcoincidences). We conclude:

Theorem 2.2. Let $f: M^m \longrightarrow N^n$ be a continuous map between smooth closed connected manifolds.

Then the selfcoincidence invariant $\omega(f)$ (cf. 2.1) is equal to the singularity invariant $\omega(\underline{\mathbb{R}}, f^*(TN))$ (cf. [Ko 1], § 2) and hence also to $\chi(N) \cdot \deg(f)$ (cf. 1.6; here $\chi(N)$ denotes the Euler number of N).

Moreover, each of the following conditions implies the next one:

- (i) $f^*(TN)$ allows a nowhere zero section over M;
- (ii) f can be approximated by a map which has no coincidences with f;
- (iii) f is loose ;
- (iv) there exist maps $f', f'': M \longrightarrow N$ which have no coincidences and which are both homotopic to f; and
- (v) $\omega(f) = 0$.

If m < 2n - 2, all these conditions are equivalent.

Indeed, in this dimension range $\omega(\underline{\mathbb{R}}, f^*(TN))$ is the only obstruction to the existence of a monomorphism $\underline{\mathbb{R}} \hookrightarrow f^*(TN)$ (see theorem 3.7 in [Ko 1]).

Special case 2.3 (codimension zero). Assume $m = n \ge 0$. Then f is loose if and only if $\omega(f) = 0$. Here the relevant normal bordism group $\Omega_0(M; f^*(TN) - TM)$ is isomorphic to \mathbb{Z} if $w_1(M) = f^*(w_1(N))$ and to \mathbb{Z}_2 otherwise. $\omega(f)$ counts the isolated zeroes of a generic section in $f^*(TN)$. We can concentrate these zeroes in a ball in M and (after isotoping some of them – if needed – around loops where $w_1(M) \neq f^*(w_1(N))$, in order to change their signs) cancel all of them if $\omega(f) = 0$.

For a very special case in higher codimensions compare [DG], 1.15.

Remark 2.4. In order to understand and compute normal bordism obstructions, it is often helpful to use the natural forgetful homomorphisms

$$\Omega_i(M;\varphi) \xrightarrow{\text{forg}} \overline{\Omega}_i(M;\varphi) \xrightarrow{\mu} H_i(M;\widetilde{\mathbb{Z}}_{\varphi})$$

Here forg retains only the orientation information contained in the \overline{g} -components of a normal bordism class, and μ denotes the Hurewicz homomorphism to homology with coefficients which are twisted like the orientation line bundle of φ . The detailed analysis of forg, given in § 9 of [Ko 1], yields computing techniques which often permit to calculate obstructions in low dimensional normal bordism groups.

\S 3. Principal bundles

As a first example consider the projection $p: M \longrightarrow N$ of a smooth principal G-bundle (cf. [S], 8.1) over the closed manifold N, with G a compact Lie group. A fixed choice of an orientation of G at its unit element equips G with a left invariant framing (which we will drop from the notation); it also yields a (stable) trivialization of the tangent bundle along the fibres of p and hence of the coefficient bundle $p^*(TN) - TM$. Thus by theorem 2.2 our selfcoincidence invariant takes the form

(3.1)
$$\omega(p) = \chi(N) \cdot [G, g = \text{fibre inclusion}] \in \Omega^{fr}_{m-n}(M) .$$

If we concentrate on the normal bundle information – which, in a way, represents the highest order component of this obstruction – and neglect its g-part, we obtain the weaker invariant

(3.2)
$$\omega'(p) := \operatorname{const}_*(\omega(p)) = \chi(N)[G] \in \Omega_{m-n}^{fr}$$

which must also vanish whenever p is loose. In other words, the Euler number $\chi(N)$ must be a multiple of the order of [G] in $\Omega_*^{fr} \cong \pi_*^S$.

For $i \leq 6$ the stable stem π_i^S is generated by the class [G] of some compact connected Lie group (e.g. $\pi_1^S = \mathbb{Z}_2 \cdot [S^1]$ and $\pi_3^S = \mathbb{Z}_{24} \cdot [SU(2)]$). However, this is not typical, and only the divisors of 72 (if not of 24) can be the order of such a class (see [O], theorem 1.1; note also Ossa's table 1).

As an illustration let us work out the details for the projections p and \tilde{p} discussed in the example of the introduction. We may assume $r > k \ge 1$.

Let us first dispose of two elementary cases.

Case 1: k = 1. $p: S^{r-1} \longrightarrow \mathbb{R}P^{r-1}$ and $\tilde{p} = \mathrm{id}_{S^{r-1}}$ are loose if and only if r is even.

This follows from 2.3 and 2.2.

Case 2: k = r - 1 or $k \equiv r - 1 \neq 0(2)$: both p and \tilde{p} are loose.

Here $p^*(TG_{r,k}) \cong p^*(\operatorname{Hom}(\gamma, \gamma^{\perp})) \cong \bigoplus^k p^*(\gamma^{\perp})$ (cf. [MS], p. 70) has a nowhere zero section, be it for orientation reasons or since $G_{r,k}$ is odd-dimensional.

Next recall that in the general setting $\dim(G_{r,k}) = k(r-k)$; the fibre dimension is given by

(3.3)
$$d(k) := \dim(S)O(k) = \frac{1}{2}k(k-1) .$$

We have $p^*(TG_{r,k}) \cong \tilde{p}^*(T\widetilde{G}_{r,k})$ and hence $\omega(p) = \omega(\tilde{p})$. According to theorem 2.2 this is the only looseness obstruction if

(3.4)
$$r \geq \frac{3}{2}k - \frac{1}{2} + \frac{3}{k}$$

Clearly the fibre of p (or \tilde{p}) over the point $(\mathbb{R}^k \subset \mathbb{R}^r)$ in the Grassmannian is $V_{k,k} = O(k)$ (or SO(k), resp.). Also, up to homotopy the fibre inclusion g factors through $V_{k,\ell}$ where $\ell := \max\{2k - r, 0\} < k$; this is seen by rotating the vectors $v_{\ell+1}, \ldots, v_k$ of a k-frame in \mathbb{R}^k into the standard basis vectors $e_{k+1}, \ldots, e_{2k-\ell}$ in \mathbb{R}^r . Except in situations which are already settled by the cases 1 and 2 above we see that the dimension of the intermediate manifold $V_{k,\ell}$ is strictly less (and often considerably so) than the fibre dimension d(k) (cf. 3.3) so that the cohomological primary obstruction detects nothing.

In particular, if $r \ge 2k$ then g is nulhomotopic and therefore all the information contained in the (complete!) non-selfcoincidence obstruction is already given by

$$\omega'(\widetilde{p}) = 2 \cdot \chi(G_{r,k})[SO(k)] \in \Omega_{d(k)}^{fr}$$

(cf. 3.2 and 3.3). The theorem of the introduction and its corollaries follow. (If (r,k) = (3,2), (4,3), (6,5) or (8,5) refer to case 2 above; if (r,k) = (9,5) the bordism class $a = [SO(5) \subset V_{9,5}] \in \Omega_{10}^{fr}(V_{9,5})$ lies in the image of $\Omega_{10}^{fr}(S^4) \cong \mathbb{Z}_6 \oplus \mathbb{Z}_2$ and hence $\omega(f) = 12a = 0$.)

\S 4. Sphere bundles

Let ξ be a (k+1)-dimensional real vector bundle over a closed manifold N^n . We want to study the coincidence question for the projection of the corresponding sphere bundle

$$p: \quad M := S(\xi) \longrightarrow N$$

Decomposing the tangent bundle of M into a "horizontal" and a "vertical" part, we obtain the canonical isomorphism

$$TM \oplus \mathbb{R} \cong p^*(TN) \oplus p^*(\xi)$$
.

Thus the following commuting diagram of Gysin sequences (cf. [Sa], 5.3 or [Ko 1], 9.20) turns out to be relevant.

Here the transverse intersection homomorphism \pitchfork can also be defined by applying $\mu \circ \text{forg}$ (cf. 2.4) and then evaluating the (possibly twisted) Euler class $e(\xi)$. $\partial(1)$ is given by the inclusion of a typical fibre $S(\xi_{y_0})$, $y_o \in N$, with boundary framing induced from the compact unit ball in ξ_{y_0} ; in other words, $\partial(1) = \text{deg}(p)$ (cf. 1.6). Thus $\omega(p) = \partial(\chi(N))$ (cf. theorem 2.2) vanishes if and only if

(4.2)
$$\chi(N) \in e(\xi) \left(\mu \circ \operatorname{forg}(\Omega_{k+1}(N; -\xi))\right)$$

We also have the successively weaker *necessary* conditions that $\chi(N)$ lies in the subgroups $e(\xi)(\mu(\overline{\Omega}_{k+1}(N;-\xi)))$ and $e(\xi)(H_{k+1}(N;\widetilde{Z}_{\xi}))$ (compare 2.4).

Example 4.3. Let ξ be an oriented real plane bundle. Then according to [Ko 1], 9.3

$$\mu \circ \operatorname{forg}(\Omega_2(N; -\xi)) = \ker(w_2(\xi) : H_2(N; \mathbb{Z}) \longrightarrow \mathbb{Z}_2)$$

Thus $\omega(p) = 0$ if and only if $\chi(N) \in e(\xi)(H_2(N;\mathbb{Z}))$ and $\chi(N)$ is even. For all $n \geq 1$ this is also the precise condition for p to be loose (if n = 2 it implies – via a cohomology Gysin sequence – that $e(p^*(TN)) = 0$; therefore $p^*(TN)$ allows a nowhere vanishing section over the 2-skeleton and hence over all of M, since $\pi_2(S^1) = 0$).

As an illustration let us consider the case when ξ is the *r*-th tensor power of the canonical complex line bundle over $\mathbb{C}P(q)$, q > 1. Then *p* is loose if and only if $q + 1 \in r\mathbb{Z} = e(\xi)(H_1(\mathbb{C}P(q);\mathbb{Z}))$ and *q* is odd. This last condition is captured by normal bordism, but not by the weaker conditions (expressed in terms of oriented bordism or homology) mentioned above (cf. 4.2; compare also theorem 2.2 in [DG]).

§ 5. Homotopy groups

Our last example deals with maps which are not fibre projections in general. Choose a local orientation of N at a base point $y_0 \in N$. Then our looseness obstruction determines a group homomorphism

$$\omega : \pi_m(N; y_0) \longrightarrow \Omega_{m-n}^{fr}$$

as follows. If n = 1, then $\omega \equiv 0$. So assume $n \geq 2$ and let x_0 and * denote the base point of S^m and its antipode. Given $[f] \in \pi_m(N; y_0)$, the inclusions $\{x_0\} \subset S^m - \{*\} \subset S^m$ determine canonical isomorphisms (use transversality!)

$$\Omega_{m-n}^{fr} \xrightarrow{\cong} \Omega_{m-n}(S^m - \{*\}; f^*(TN)) \xrightarrow{\cong} \Omega_{m-n}(S^m; f^*(TN))$$

which we apply to the obstruction $\omega(f)$. Clearly, we just obtain a multiple of a similarly defined degree homomorphism (which in the case $N = S^n$ is the stable Freudenthal suspension). The relevant multiplying factor is the Euler number of N (whether N is closed or not).

Appendix

Our approach yields also a short proof of the following result which is very useful for calculations as in \S 3.

Theorem of Becker and Schultz (cf. [BS], 4.5). Let B be a compact connected Lie group and $G \subset B$ a proper closed subgroup. Then

$$\chi(B/G)$$
 \cdot $[G]$ = 0 in Ω^{fr}_{*} .

Proof. The left hand term is the (weak) selfcoincidence invariant $\omega'(p)$ of the projection $p: B \longrightarrow B/G$ (cf. 3.2). But right multiplication with a path in B from the unit to some element $b_0 \notin G$, when composed with p, yields a deformation from p to a map p' which has no coincidences with p. Thus p is loose and $\omega'(p) = 0$.

More directly: the left hand term is represented by the zero set of the pullback (under p) of a generic section of T(B/G). But clearly $p^*(T(B/G))$ allows a (left invariant) section with empty zero set, and the two zero sets are framed bordant.

Corollary. $2 \cdot [SO(k)] = 0$ for all even $k \ge 2$.

Indeed, $SO(k+1)/SO(k) \cong S^k$ has Euler number 2.

References

- [AS] M. F. Atiyah and L. Smith, Compact Lie groups and stable homotopy of spheres, Topology 13 (1974), 135–142.
- [BS] J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings, Geometric Applications of Homotopy Theory I, Proc. Evanston 1977, Springer Lecture Notes 657, 1–31.
- [DG] A. Dold and D. Gonçalves, Self-coincidence of fibre maps, Preprint (2002), Heidelberg.
- [GJW] D. Gonçalves, J. Jezierski, and P. Wong, Obstruction theory and coincidences in positive codimension, Preprint (2002), Bates College.
- [Kn] K. Knapp, Rank and Adams filtration of a Lie group, Topology 17 (1978), 41–52.
- [Ko 1] U. Koschorke, Vector fields and other vector bundle morphisms a singularity approach, Springer Lecture Notes in Mathematics 847 (1981).
- [Ko 2] _____, The singularity method and immersions of m-manifolds into manifolds of dimensions 2m 2, 2m 3, and 2m 4, Springer Lecture Notes in Mathematics **1350** (1988), 188–212.
- [Ko 3] _____, Antipodal vector bundle monomorphisms, Israel Journal of Mathematics 127 (2002), 29–59.
- [Ko 4] _____, Homotopy classification of line fields and Lorentz metrics on closed manifolds, Mathematical Proceedings of the Cambridge Phil. Soc. **132** (2002), 281–300.
- [MS] J. Milnor and J. Stasheff, *Characteristic classes*, Annals of Mathematics Studies **76** (1974), Princeton University Press.
- [O] E. Ossa, Lie groups as framed manifolds, Topology **21** (1982), no. 3, 315–323.
- [Sa] H. A. Salomonsen, Bordism and geometric dimension, Math. Scand. **32** (1973), 87-111.
- [St] N. Steenrod, *The topology of fiber bundles*, Princeton University Press, 1951.

UNIVERSITÄT SIEGEN, EMMY NOETHER CAMPUS, WALTER-FLEX-STR. 3, D-57068 SIEGEN, GERMANY

 $E\text{-}mail\ address:\ koschorke@mathematik.uni-siegen.de$