Übungen zur Stochastik I, WS 07/08

Blatt 8

- 1. Sei $B_{n,p}$ die Binomialverteilung zu den Parametern $n \in \mathbb{N}$ und $p \in [0,1]$.
 - (a) Man zeige die Gleichheit $m(B_{n,p}) = np$ für $p \in [0,1]$ unter Verwendung von Lemma 5.4 der Vorlesung. [Hinweis: Man beachte, dass Lemma 5.4 für $p \in [0,1]$ gilt.]
 - (b) Man gebe die Binomialverteilungen $B_{n,p}$ für p = 0, 1 explizit an. Man berechne für diese Spezialfälle den Mittelwert direkt. (2)
- 2. Sei

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{(-\infty,x]}(x_i), \quad x \in \mathbb{R},$$

die empirische Vf zu den Daten $x_1, \ldots, x_n \in \mathbb{R}$ (vgl. Def. C.1).

- (a) Man beweise, dass F_n eine Vf ist. (2)
- (b) Man gebe explizit das W-Maß P_n zu der Vf F_n an. (1)
- 3. (Erste Eintrittszeit in einer Menge B.) Seien X_1, \ldots, X_n iid diskrete Zufallsvariable mit Verteilung $P(X_i \in \cdot) = Q$ auf einer höchstens abzählbaren Menge S. Die erste Eintrittszeit in $B \subset S$ ist definiert durch die Zufallsvariable

$$Y = \min\{i \in \{1, \dots, n\} : X_i \in B\},\$$

wobei $Y(\omega) = n+1$ genommen wird, falls $X_i(\omega) \in B^c$ für alle $i=1,\ldots,n$. Man zeige, dass

$$P(Y = k) = Q(B)(1 - Q(B))^{k-1}$$

für k = 1, ..., n. Man gebe ebenfalls P(Y = n + 1) an! (4)

4. Man beweise, dass für diskrete Zufallsvariable $X_i:\Omega\to\mathbb{Z},\ i=1,2,$ die folgende Aussage gilt:

$$P(X_1 + X_2 = k) = \sum_{m \in \mathbb{Z}} P(X_1 = k - m, X_2 = m), \quad k \in \mathbb{Z}.$$

[Beachte:
$$A \cap \sum_{i \in I} B_i = \sum_{i \in I} (A \cap B_i)$$
.] (3)

5. Seien X_1, X_2 unabhängige, Poisson-verteilte Zufallsvariable mit Parametern $\lambda_1 > 0$ bzw. $\lambda_2 > 0$. Man zeige, dass $X_1 + X_2$ Poisson-verteilt ist mit Parameter $\lambda = \lambda_1 + \lambda_2$. [Beachte: $(\lambda_1 + \lambda_2)^k = \sum_{m=0}^k \binom{k}{m} \lambda_1^m \lambda_2^{k-m}$.] (3)

Abgabetermin: Mo./Di., den 17./18.12.2007, in den Übungen.