Sommersemester 2012

Stochastische Analysis

1. Übungsblatt

Aufgabe 1

Es sei $N \in \mathbb{N}$ und $(X_n)_{n>0}$ eine symmetrische Irrfahrt mit Start in $x \in \{0,\ldots,N\}$. Wir setzen

$$\tau := \inf \{ n > 0 : X_n = 0 \text{ oder } X_n = N \}.$$

Man zeige: $\mathbb{E}\tau = x(N-x)$.

Hinweis: Vollständige Induktion über N und das Optional Stopping Theorem benutzen!

Aufgabe 2

Man gebe einen stochastischen Prozess $(X_t)_{t\geq 0}$ an, dessen natürliche Filtration nicht rechtsstetig ist.

Aufgabe 3

Man zeige folgende Aussagen:

- (a) Wenn $(X_t)_{t\geq 0}$ und $(Y_t)_{t\geq 0}$ Supermartingale sind, so ist auch $(X_t \wedge Y_t)_{t\geq 0}$ Supermartingal.
- (b) Sei $(X_t)_{t\geq 0}$ ein Submartingal und $a\in\mathbb{R}$. Dann ist $((X_t-a)^+)_{t>0}$ auch ein Submartingal.
- (c) Sei $(X_t)_{t\geq 0}$ ein Martingal und $\varphi: \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion. Falls $\mathbb{E}\varphi(X_t)^+ < \infty$ für alle $t\geq 0$, dann ist $(\varphi(X_t))_{t\geq 0}$ ein Submartingal.
- (d) Sei $(X_t)_{t\geq 0}$ ein Martingal und $p\geq 1$. Falls $(|X_t|^p)_{t\geq 0}$ ein \mathcal{L}^1 -Prozess ist, so ist $(|X_t|^p)_{t\geq 0}$ ein Submartingal.

Aufgabe 4

Sei $(B_t)_{t\geq 0}$ eine Standard–Brownsche Bewegung und $\mathbb{F}=(\mathcal{F}_t)_{t\geq 0}$ die von $(B_t)_{t\geq 0}$ erzeugte Filtration. Man zeige, dass dann

- (a) $(B_t^3 3tB_t)_{t>0}$ und
- (b) $(B_t^4 6tB_t^2 + 3t^2)_{t>0}$

F-Martingale sind.

Man verallgemeinere! Zu diesem Anlass wiederhole bzw. studiere man den Begriff der Hermite-Polynome.