Sommersemester 2013

Stochastik für Bauingenieure

5. Übungsblatt

Aufgabe 18

Man gebe mittels einer Normal–Approximation die Wahrscheinlichkeit an, dass eine Partei, die bei der Wahl tatsächlich eine Mehrheit von 51% erzielt, bei einer Stichprobe von 1000 Wahlzetteln höchstens 48% der Stimmen erhält. Es gilt $\Phi(1.9) \approx 0.97$, wobei Φ die Verteilungsfunktion der Standardnormalverteilung bezeichnet.

Aufgabe 19

Sei X eine normalverteilte Zufallsvariable mit unbekanntem Mittelwert μ und unbekannter Varianz σ^2 . Schätzen Sie anhand der Stichprobe

140 162 128 132 136 148 140 128 135 158

den Mittelwert μ und die Varianz σ^2 .

Aufgabe 20

Man bestimme für eine Poisson-verteilte Stichprobe X_1, \ldots, X_n den Maximum-Likelihood-Schätzer für den Parameter λ .

Aufgabe 21

Bestimmen Sie für die Stichprobe in Aufgabe 19 ein Konfidenzintervall zum Niveau $\beta=95\%$ für den Mittelwert μ bei

- (a) bekannter Varianz $\sigma^2 = 9$,
- (b) unbekannter Varianz σ^2 .

Aufgabe 22

Die Auswertung einer Stichprobe vom Umfang n=15 hat die Werte

$$\bar{x} = 10.5$$
 und $s = 1.5$

ergeben. Bestimmen Sie jeweils ein Vertrauensintervall zum Niveau $\beta=0.9$ für den unbekannten Mittelwert μ und die unbekannte Varianz σ^2 .