Wintersemester 2011/2012

Brownsche Bewegung I

1. Übungsblatt

Aufgabe 1

Man gebe ein Beispiel eines messbaren Raumes (Ω, \mathcal{A}) und zwei verschiedenen Wahrscheinlichkeitsmaßen \mathbb{P}_1 und \mathbb{P}_2 auf (Ω, \mathcal{A}) , die auf einem Erzeuger von \mathcal{A} übereinstimmen.

Aufgabe 2

Es seien (Ω, \mathcal{A}) und (Ω', \mathcal{A}') messbare Räume und $X : \Omega \to \Omega'$ eine Abbildung. Sei \mathcal{C} ein Erzeuger von \mathcal{A}' . Man zeige: Falls $X^{-1}(C) \in \mathcal{A}$ für alle $C \in \mathcal{C}$, so ist X messbar.

Aufgabe 3

Es sei $\Omega \subseteq \mathbb{R}^2$ eine Borelmenge mit $\lambda^2(\Omega) = 1$ (λ^2 bezeichne das 2-dimensionale Lebesgue-Maß, also den Flächeninhalt). Somit ist $(\Omega, \mathcal{B}(\Omega), \lambda^2_{|\Omega})$ ein Wahrscheinlichkeitsraum ($\mathcal{B}(\Omega)$ bezeichne die Borel- σ -Algebra über Ω). Wir betrachten die Zufallsgrößen $X, Y : \Omega \to \mathbb{R}$, definiert durch X(x, y) := x und Y(x, y) := y. Man finde alle Mengen Ω , für die X und Y

- (a) unabhängig sind,
- (b) unabhängig und identisch verteilt sind.

Aufgabe 4

Es sei $X: (\Omega_1 \times \Omega_2, \mathcal{A}_1 \times \mathcal{A}_2) \to (E, \mathcal{E})$ messbar. Man zeige, dass die Abbildungen

$$X_{\omega_1}: (\Omega_2, \mathcal{A}_2) \to (E, \mathcal{E}), \qquad X_{\omega_1}(\omega_2) := X(\omega_1, \omega_2)$$

und

$$X_{\omega_2}: (\Omega_1, \mathcal{A}_1) \to (E, \mathcal{E}), \qquad X_{\omega_2}(\omega_1) := X(\omega_1, \omega_2)$$

messbar sind.

Hinweis: Man beginne mit dem Fall, dass X eine Indikatorfunktion einer Menge aus $A_1 \times A_2$ ist.