Übungsblatt 7

Verzweigungs- und Erneuerungstheorie

Die Aufgaben beziehen sich auf Kapitel 5 "Der Bellman-Harris Prozess" der Vorlesung, d.h. ω , Ω , $Z(t,\omega)$, . . . sind wie dort definiert.

Aufgabe 1

Beweisen Sie Satz 3: Falls für ein $\omega \in \Omega$ jede Generation $I_1(\omega), I_2(\omega), \ldots$ nichtleer ist, so enthält $I(\omega)$ eine unendliche Abstammungslinie.

Aufgabe 2

Beweisen Sie Satz 5: Wenn $Z(t_0, \omega_0) = 0$ für ein t_0 und ein ω_0 , dann ist $Z(t, \omega_0) = 0$ für alle $t > t_0$.

Aufgabe 3

Beweisen Sie Folgerung 9: Die Aussterbewahrscheinlichkeit

$$\eta = \mathbb{P} \! \left(\text{es gibt ein } t_0 \geq 0, \text{so dass } Z(t) = 0 \text{ für alle } t \geq t_0 \right)$$

ist die kleinste nichtnegative Lösung der Gleichung h(s)=s. Dabei ist $h(s)=\sum_{k=0}^{\infty}p_ks^k$ die Erzeugendenfunktion der Verteilung der Kinderzahl eines Individuums.