Übungen zur Stochastik I

Aufgabe 1: Ritter de Méré glaubte, mit 4 Würfeln mindestens eine Sechs zu werfen habe dieselbe Wahrscheinlichkeit, wie mit 2 Würfeln bei 24 Würfen mindestens eine Doppelsechs zu werfen. Stimmt dies?

- (a) Geben Sie für beide Spiele je einen geeigneten Stichprobenraum Ω an.
- (b) Formulieren Sie die Ereignisse "mindestens eine Sechs" und "mindestens eine Doppelsechs" als Teilmengen des entsprechenden Stichprobenraums.
- (c) Berechnen Sie die Wahrscheinlichkeiten und entscheiden Sie, ob der Ritter de Méré Recht hatte.

Aufgabe 2: Es seien $I \neq \emptyset$, $G \neq \emptyset$ Mengen und $A, B, C, M_i, N_i \in$ Pot(G) für $i \in I$. Zeigen Sie:

- (a) $A \cap B = A \setminus (A \setminus B)$
- (b) $(A \cup B) \cap A^c = B \cap A^c$
- (c) $(A \cup B)^c = A^c \cap B^c$
- (d) $A \setminus \bigcup_{i \in I} M_i = \bigcap_{i \in I} (A \setminus M_i)$ (e) $A \setminus \bigcap_{i \in I} M_i = \bigcup_{i \in I} (A \setminus M_i)$
- (f) $\bigcup_{i \in I} (M_i \cap N_i) \subset \left(\bigcup_{i \in I} M_i\right) \cap \left(\bigcup_{i \in I} N_i\right)$ (g) $\bigcap_{i \in I} (M_i \cup N_i) \supset \left(\bigcap_{i \in I} M_i\right) \cup \left(\bigcap_{i \in I} N_i\right)$
- (h) Zeigen Sie anhand eines Gegenbeispieles, daß in (f) und (g) Gleichheit im allgemeinen nicht gilt.

 $A\triangle B:=(A\setminus B)\cup(B\setminus A)$ heißt die symmetrische Differenz von A und B. Man beweise die folgenden Eigenschaften:

- (i) $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- (j) $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$.
- (k) $A \triangle G = A^c$, $A \triangle A = \emptyset$
- (1) $A = A \triangle B \iff B = \emptyset$
- (m) $A \triangle B = B \setminus A$ falls $A \subset B$
- (n) $A\triangle B = A \cup B$ falls $A \subset B^c$.

Abgabe: Diesmal keine Abgabe. Die Aufgaben werden in der Woche vom 19.10. - 23.10 besprochen.

1