Dr. Alexander Hoffmann

Übungen zur Stochastik I

Aufgabe 3: Geben Sie bei den Aufgaben eine geeignete σ -Algebra zur mathematischen Beschreibung des Experiments an.

- (a) Ein Würfel wird geworfen und abhängig vom Ergebnis i des Wurfes aus einer von sechs Urnen $U_1, ..., U_6$ eine Kugel gezogen, wobei in der i-ten Urne i rote und 7-i schwarze Kugeln liegen. Stellen Sie das Ereignis "eine rote Kugel wurde gezogen" mathematisch dar.
- (b) Beim Eiskunstlauf beurteilen die Richter die Leistungen von sechs Läufern. Jeder der Richter darf genau einmal jede Note 1,...,6 vergeben. Stellen Sie das Ereignis "ein Läufer erhält nur die Note 6 von allen Richtern" dar.

Aufgabe 4: $\mathfrak{A} \subset \operatorname{Pot}(\Omega)$ sei eine σ -Algebra, $(A_n)_n \subset \mathfrak{A}$ eine Folge von Ereignissen.

(a) Zeigen Sie, daß

 $\omega \in \liminf_{n \to \infty} A_n \iff \omega \in A_n \text{ für fast alle } n$ $\omega \in \limsup_{n \to \infty} A_n \iff \omega \in A_n \text{ für unendlich viele } n$

- (b) Zeigen Sie, daß die folgenden zusammengesetzten Ereignisse in ${\mathfrak A}$ liegen:
 - (i) Mindestens zwei der Ereignisse (A_n) treten ein. Mit einem Run der Länge k bezeichnet man eine Folge von k hintereinander auftretenden Ereignissen aus (A_n) .
 - (ii) Runs beliebiger Länge treten auf.
 - (iii) Für jedes $n \in \mathbb{N}$ gibt es nur endlich viele Runs der Länge n.

(*Hinweis:* Drücken Sie die Ereignisse mit Hilfe der Mengenoperationen \cap , \cup und \setminus durch die Ereignisse (A_n) aus.)

Aufgabe 5: Es sei $I \neq \emptyset$ eine Indexmenge und für $i \in I$ sei \mathfrak{A}_i eine σ -Algebra auf Ω . Zeigen Sie, daß dann auch

$$\mathfrak{A} = \bigcap_{i \in I} \mathfrak{A}_i$$

eine σ -Algebra ist.

Abgabe: in den Übungen vom 24.10. - 27.10.