
Fakultät IV
Department · Mathematik
Lehrstuhl für Mathematische Logik und
Theoretische Informatik
Prof. Dr. Dieter Spreen
Christian Uhrhan, Walter Beking, Felix Nöh

Grundlagen der Theoretischen Informatik, WS11/12 Übungsblatt **2**, Abgabe bis zum **Mi. 09. November**¹

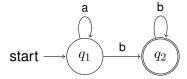
- In jeder Aufgabe können 5 Punkte erreicht werden.
- Es sind Doppelabgaben erlaubt. Name und Matr.Nr. sollten gut leserlich auf der Abgabe stehen.
- Bitte geben Sie Ihre Lösungen in gut leserlicher und sauberer Form ab.
- Begründen Sie Ihre Antworten und argumentieren Sie nachvollziehbar.

Aufgabe 1. Betrachten Sie den ε -NDEA $A=(\Sigma,Q,q_1,\{q_9\},\Delta)$, wobei $\Sigma=\{0,1\},Q=\{q_0,\ldots,q_9\}$ und Δ durch folgendes Diagramm gegeben ist:

(a) Ändern Sie den Automaten in einen NDEA ab, der die gleiche Sprache akzeptiert.

¹Abgabe am Besten in der Vorlesung. Alternativ können Lösungen auch *persönlich* bei Christian Uhrhan (EN-B 0125) oder im Sekretariat der theoretischen Informatik (EN-B 0121) abgegeben werden. Verwenden Sie auf keinen Fall den Briefkasten des Lehrstuhls.

(b) Konstruieren Sie den Potenzautomaten des NDEA aus (a).


HINWEIS: Bitte Geben Sie die Zustandsmengen, die Startzustände und die Mengen der Endzustände explizit an. Die Übergangsrelation *kann* in graphischer Darstellung angegeben werden. Die Übergangsfunktion *kann* in tabellarischer Form angegeben werden und kann nur die erreichbaren Zustände berücksichtigen.

Aufgabe 2. Konstruieren Sie einen DEA, der die Sprache

$$L = \{w \in \{a, b\}^* \mid w \text{ enthält nicht bba als Teilwort}\}$$

akzeptiert.

Aufgabe 3. Gegeben sei folgender DEA *A*:

Berechnen Sie die von dem Automaten erkannte Sprache L(A) mit dem Verfahren aus der Vorlesung (Proposition 2.2.26).

Aufgabe 4. Beweisen oder widerlegen Sie jeweils die folgenden Aussagen. Sie können annehmen, daß die Sprache $\{a^nb^n\mid n\in\mathbb{N}\}$ über dem Alphabet $\{a,b\}$ nicht-regulär ist.

- (a) Seien L_1 und L_2 reguläre Sprachen. Jede Sprache L, die so beschaffen ist, dass $L_1 \subseteq L \subseteq L_2$ ist auch regulär.
- (b) Der Durchschnitt einer nichtregulären Sprache mit einer regulären Sprache ist immer regulär.
- (c) Der Durchschnitt zweier nichtregulärer Sprachen ist immer nichtregulär.
- (d) Wenn L^* nichtregulär ist, so ist auch L.

ENDE