

Diskrete Mathematik für Informatiker, WS13/14 Übungsblatt 8, Besprechung in den Übungen vom 6.–8. Jan.

Aufgabe 1. Berechnen Sie das multiplikative Inverse von 2, 3, 22 und 50 in \mathbb{Z}_{101} .

Aufgabe 2. Bei der Buchnummer 321910?737 ist die 7. Stelle leider unleserlich. Welche Ziffer fehlt, damit wir eine korrekte ISBN-10 erhalten? (Vergessen Sie nicht Ihre Begründung).

Aufgabe 3. Sei n eine natürliche Zahl. Finden Sie k mit $0 \le k < n$, so daß

- (a) $k \equiv n + 1 \mod n$
- (b) $k \equiv n^2 \mod n$
- (c) $k \equiv 2n + 5 \mod n$
- (d) $k \equiv 4n 1 \mod n$
- (e) $k \equiv n(n+1) \mod n$
- (f) $k \equiv (n-1)^2 \mod n$
- (g) $k \equiv (2n+1)(n+1) \mod n$
- (h) $k \equiv (n-1)^{10001} \mod n$

Aufgabe 4. Die symmetrische Differenz zweier Mengen A, B ist definiert als

$$A \triangle B = (A \backslash B) \cup (B \backslash A)$$
.

Zeigen Sie, daß für eine festgewählte Menge M die Menge aller Teilmengen von M zusammen mit der symmetrischen Differenz, also $(\mathcal{P}(M), \Delta)$ eine abelsche Gruppe ist. Sie können annehmen, daß Δ assoziativ ist.

Aufgabe 5. Dies hätte eine wunderbare Aufgabe zu einer Gruppe $(\{a,b,c,d,f,g\},\circ)$ mit 6 Elementen sein sollen. Leider habe ich vergessen, wie genau die Gruppenverknüpfung aussieht. Wenn ich mich recht erinnere sollte die Gruppe abelsch sein. Ergänzen Sie den Rest der Verknüpfungstabelle.

Aufgabe 6. Beweisen Sie, daß wenn (G, \circ) eine Gruppe ist, in der für jedes Element $x \in G$ gilt daß $x^2 = e$, dann ist (G, \circ) eine kommutative Gruppe. Geben Sie in jedem Schritt an welches der Gruppenaxiome G1-G3 verwendet wird.

Tipp: Man beachte, daß für beliebige $x, y \in G$, auch gilt, daß $(x \circ y)^2 = e$, da $x \circ y$ ja auch wieder Element von G ist.

Aufgabe 7. (a) Was sind die Ordnungen der vier Elemente in \mathbb{Z}_4 und der vier Elemente von \mathbb{Z}_5^* ?¹

- (b) Geben Sie einen Isomorphismus zwischen \mathbb{Z}_4 und \mathbb{Z}_5^* an (ohne Beweis).
- (c) Zeigen Sie, daß \mathbb{Z}_9 und $\mathbb{Z}_3 \times \mathbb{Z}_3$ nicht isomorph sein können. Hinweis: in $\mathbb{Z}_3 \times \mathbb{Z}_3$ hat jedes Element eine Ordnung kleiner gleich 3.

Zusatzaufgabe 8. Wie wir oben gesehen haben ist $(\mathcal{P}(M), \Delta)$ eine Gruppe. Zeigen Sie nun, daß wenn M endlich ist, diese Gruppe isomorph zu $(\mathbb{Z}_2)^{|M|}$ ist.

ENDE

 $^{^{1}}$ Die Ordnung eines Elementes a war ja definiert als die kleinste natürliche Zahl m, so daß $a^{m}=e$. In dieser Definition ist mit a^{m} gemeint, daß das Element a m-mal mit sich selbstverknüpft wird. Im Falle von modulare Arithmetik mit Addition als Verknüpfung also m-mal mit sich selbst addiert wird, also mit m malgenommen und nicht hoch m genommen wird.