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Abstract

By using additional structure inherent in coherence spaces a new model for intuition-
istic linear logic 1s constructed which is not a model for classical linear logic. The new
class of spaces contains also the empty space, whence it yields a logical model, not only
a type-theoretic one.

1 Introduction

Linear logic was discovered by Girard [7, 8] while constructing his coherence space semantics
for second-order lambda calculus, introduced independently by Girard [5, 6] and Reynolds
[11] and called System F' by Girard. Since its discovery linear logic has found much interest
among logicians and computer scientists. It is a resource-sensitive logic that keeps at the
same time the constructivity of intuitionistic logic and the symmetries of classical logic. The
coherent space interpretation of linear logic can be regarded as its standard semantics, since
it has been extracted from this semantics.

Coherence spaces are a special kind of Scott domains and can thus be represented as
inverse limits of cochains of their finite subspaces. Each such approximating chain of sub-
spaces defines uniform levels of approximation for the elements of the approximated space.
In this paper we present an axiomatic description of this phenomenon: pre-coherence spaces
with approximation structure. By doing so we relax the notion of a coherence space in such
a way that it need not contain a least element. Its existence is ensured by the approximation
structure, if the space is not empty. As is shown in the paper, the category of pre-coherence
spaces with approximation structure and linear maps yields a model of intuitionistic linear
logic, but not of classical linear logic. The reason is that a pre-coherence spaces with ap-
proximation structure may be empty. Thus, we obtain not only a model for the type system
given by the derivable formulae, but also of the logic.

The model construction parallels more or less Girard’s original construction. But one
of the central identities in Girard’s construction, namely the one which allows the defini-
tion of linear implication by linear negation (dualization) and tensor, does not hold in the
construction presented here. The reason is that dualization trivializes the approximation
structure.

There are also other order-theoretic models of intuitionistic linear logic. Examples are
the category of complete partial orders and strict Scott continuous functions as well as the
category of dl-domains and linear maps and generalizations thereof (cf. [4]).



The paper is organized as follows. In Section 2 pre-coherence spaces with approximation
structure are introduced and the necessary operations for the interpretation of linear logic are
defined. The syntax and the deduction rules for linear logic are given in Section 3. Moreover,
it is shown that pre-coherence spaces with approximation structure and linear maps are a
model for intuitionistic linear logic, but not of classical linear logic. Final remarks appear in
Section 4. Here, we show that in the model linear implication cannot be defined by linear
negation (dualization) and tensor.

2 Pre-coherence spaces with approximation structure

Let (D,C) be a (possibly empty) partially ordered set (poset). For a subset S of D, |.S =
{z € D|(Jy € S)x Cy}is the lower set generated by S. The subset S is called compatible
if it has an upper bound. S is directed, if it is nonempty and every pair of elements in S
has an upper bound in S. D is directed-complete if every directed subset S of D has a least
upper bound | |.S in D, D is bounded-complete if every compatible pair {z,y} of elements of
D has a least upper bound z Uy in D, and D is binary-complete if every nonempty subset S
of D such that 2 Uy exists in D, for all x,y € S, has a least upper bound in D. Note that in
a bounded- and directed-complete poset any nonempty compatible subset has a least upper
bound.

An element z of D is compact if for any directed subset S of D the least upper bound
of which exists in D the relation z C | | S always implies the existence of an element u € S
with  C u. We write D for the set of all compact elements of D. D is called finitary if
for all u € D the lower set generated by {u} is finite. If for every y € D the set of all
u € D° with u C y is directed and has y as its least upper bound, the poset D is said to be
algebraic, and w-algebraic if, in addition, D is countable. Bounded- and directed-complete
w-algebraic posets with least element are also called Scott domains. Standard references for
domain theory and its applications are [10, 9, 1, 13, 3].

A complete prime (coprime) of D is an element d such that for any nonempty compatible
subset S of D which has a least upper bound in D the relation d C | |.S always implies the
existence of an element z € S with d C 2. We denote the set of coprimes of D by DP. D is
called prime algebraic if d=[|{pe D? |pC d}, forall d e D.

Definition 2.1 A poset D is a pre-coherence space if it is binary-complete, bounded-
complete and prime algebraic such that any two different coprimes are incomparable with
respect to the partial order.

As is easily verified, pre-coherence spaces are finitary. Moreover, the pre-coherence spaces
with least element are exactly the coherence spaces defined by Girard [8]. Hence, they are
finitary Scott domains that satisfy Berry’s Axiom d which says that for all z,y,z € D such
that {y, z} is bounded, M (yUz) = (zMy) U (2Mz). Such domains are called dl-domains [3].

When dealing with dI-domains one usually considers stable functions as morphisms.

Definition 2.2 Let D and F be posets. A function f: D — F is said to be

1. Secott continuous if it is monotone and if for any directed subset .S of D such that the
least upper bound of S exists in D or the least upper bound of f(9) exists in E, one
has that also the other least upper bound exists and

(LS =1 7).



2. stable if it is Scott continuous and for all compatible pairs {z,y} in D such that the
greatest lower bound 2 My of 2 and y exists in D or the greatest lower bound of f(z)
and f(y) exists in F/, one has that also the other greatest lower bound exists and

Seny) = flz)n fy).

Stable functions f, g: D — F are usually ordered by the stable ordering Cg, where f C; ¢
if for all z,y € D

v Cy= f(z)=f(y)Ng(z).

It is widely known that every dl-domain D can be represented as the inverse limit of an
w-cochain (D;);e, of finite subdomains [2]. Since the subdomains D; are closed under the
operation of taking existing least upper bounds, any element z has a best approximation
L|{z € D;|zLC z}in each of them. Abstracting from such properties one obtains the notion
of an approximation structure.

Definition 2.3 Let D be a pre-coherence space and for each i € w, []P: D = D. ([1P)icw
is said to be an approzimation structure on D if the following conditions (1)-(7) hold:

1. [P is stable.

2. ID; C D;y where D; ={xc D|[z]P =2}.
3. D° C Y, D.

4. [P o [P = [ r-

5. [P Cyid ).
6. ;[P = idp.
7. (Va,y € D)[2]§ = [y]§-

Approximation structures satisfying conditions (1)-(6) of the above definition have been
studied by the author in the case of dI-domains [12].

Note that a pre-coherence space D with approximation structure ([-]P);c, may be empty.
In this case the maps []ZD are the empty maps. But if D is not empty, it has a least element,
by conditions (5) and (7), which we denote by Lp. Thus, a pre-coherence space with
approximation structure is either empty or a coherence space.

Examples of pre-coherence spaces with approximation structure which we need later are
the two-point space S = {1, T} with L C T, [2]¥ = 2, for € S and i > 0, and [2]5 = L,
and the one-point space 1L = {1} with [-]{* being the identity on 1L, for all i € w.

For & € D let the rank of z, written rk(z), be the smallest number ¢ with @ € D, if there
is such an 7, and let it be w, otherwise. Note that for every coprime p, rk(p) > 0, since Lp
is not a coprime.

Definition 2.4 Let D and F be pre-coherence spaces with approximation structure. A
stable function f: D — E is linear if fo[-]¥ =[] o f and for all compatible pairs {z,y} of
elements of D,

fleUy) = flz)U fy).



Lemma 2.5 Let D be a pre-coherence space with approzimation structure. Then every map
[P is linear.

Proof: The first requirement follows from condition 2.3(4). For the verification of the second
one let {z,y} be a compatible pair of elements of D. By the monotonicity of [-]” we have that
[2]PUy]P C [2uy]P. Now, let p € DP with p C [z Uy]P. Then p € D; by condition 2.3(2).

K3

Moreover, p C @ U y, by condition 2.3(5). Hence p C z or p C y, since p is a coprime. Thus
p=[plP C [2]P or p = [p]P C [y]P, which implies that p C [z]P] U [y]P. Since D is prime
algebraic it follows that [z Uy]P C [2]P U [y]P.

K3

For stable maps f: D — FE between pre-coherence spaces one has that for each p € EP
there is a least element v € D° with p C f(u) (see e.g. [4] where similar spaces are considered).
This is used for an alternative description of stable functions.

Definition 2.6 Let D and F be pre-coherence spaces and f: D — F be stable. The set
Tr(f) = { (u,p) € D° x E? | w is minimal with p C f(u) }
is called the trace of f.

As is easily verified, Tr([-]P) = { (p,p) | p € DP Atk(p) < i}, forall i € w.

The trace of a stable function has certain characteristic properties such that each set
of pairs of compact elements and coprimes with these properties is the trace of a stable
function. Let pr, and pr,, respectively, denote the projection on the first and the second
component.

Lemma 2.7 Let D and F be pre-coherence spaces and f: D — E be stable. Then Tr(f)
satisfies the following properties:

1. For every x € D there is some u € pr,(Tr(f)) with v C z.
2. For every finite subset X of Tr(f), if pry(z) is compatible, so is pr,y(z).
3. For all (u,p), (v,p) € Tr(f), if {u,v} is compatible then u = v.

4. For all ¢ € EP with ¢ T p, for some (u,p) € Tr(f), there is a v C u such that
(v, ) € Te(f).

Lemma 2.8 1. From Tr(f) one can compute f via the following formula:
f@) =] [{p| BuC a)(u,p) € Tr(f) }.

2. Fach set of pairs of compact elements and coprimes satisfying conditions (1)-(4) of
Lemma 2.7 is the trace of a stable function defined by the formula above.

Because of these results one usually identifies a stable function with its trace. Note in
addition that for two stable functions f, g between pre-coherence spaces

fEsge Tr(f) CTr(g).

There is a nice way of seeing whether a stable function is linear or not by looking at its
trace.



Lemma 2.9 Let D and F be pre-coherence spaces with approzimation structure and f: D —
E be stable. Then [ is linear if and only if pr,(Tr(f)) € DP.

Theorem 2.10 Let D and E be pre-coherence spaces with approzimation structure. Then
the set [D — F] of all linear functions from D into E is a pre-coherence space. Its coprimes
are the linear functions that have singletons as trace.

For h € [D —, E] and i € w define
[h)i(x) = [h(2)]7 (2 € D).
Then [h)¢ is linear again. The trace of [A]¢ can easily be computed from the trace of .

Lemma 2.11 Let D and E be pre-coherence spaces with approximation structure, h € [D —
El and i € w. Then

Te([h]5) = { (p,q) € Tr(h) | rk(q) <i}.

Theorem 2.12 Let D and E be pre-coherence spaces with approximation structure. Then
([9sew is an approzimation structure on [D —, E].

For pre-coherence spaces D and F with approximation structure set

D@ E=(D\[F(D) x (E\[F(E) U (LIF(D) x [I§ (E)),
define

v Cyelr,ye (D\[IFD) x (E\[J5(E) Apry(x) Tp pry(y) Apry(e) Ty pry(y)]
v e ([5(D) x [15 (1)),

and let [2]7 = ([pry (2)]F, [pry()]F), for @ € (D\[]

remaining cases let []¥ be the unique element of ([-]
and undefined, otherwise.

Moreover, let D x E be the Cartesian product of D and E endowed with the component-
wise partial order and the mappings [-] (¢ € w) defined by

K3

[(z, )17 = (217, D).

(D)) x (F [] (F)) and ¢ > 0. In the

D
0 \
D(D) x [[JE(E)), if this set is not empty,

Next, set
D@ E=[{0} x (D\[JF DNV} x (E\ [ (ENU ([10(D) x L5 (),
define
v Cy <[pry(2) = pry(y) = 0 A pry(z) Ep pry(y)]
V [pry(z) = pry(y) = 1A pry(a) Eg pry(y)]
Ve ([7(D) x L5 (£)),
0

and for i > 0 set [1]F = [pry()]P, it ¢ € {0} x (D\ [IR(D)), and [2]F = [pry(e)]F, if
€ {1} x (E\[]OE(E)) Fori >0 and 2 € ([]OD( ) x [JE(F)),and for i=0and 2 € DH E
let [2]? be the unique element in ([-]5(D) x []¥(E)), if this set is not empty, and let it be
undefined, otherwise.

Finally, let p(D) be the set of all nonempty bounded subsets of D ordered by set
inclusion. For ¢ € w and X € p(D) set

X = ([P € X ).
Then [X]f(D) is bounded, by condition 2.3(5).



Theorem 2.13 Let D and E be pre-coherence spaces with approximation structure. Then
D@ FE, DxFE, D& FE and p(D) are pre-coherence spaces with approximation structure as
well.

3 Propositional linear logic

We use capital Greek letters ', A, . .. for finite sequences of formulae and capital Latin letters
A, B, ... for single formulae. Formulae are built up as usual from propositional variables
oo, a1, ... and constants L, T,0,1 with the help of the binary operators I, U, %, — and the
unary operator !. Note here that we follow the notation of Troelstra [14], from where we
have also taken the natural deduction system in Table 1. Moreover, observe that if I" is the
sequence Aq,..., A, then !I' denotes the sequence !4;,...,14,,.

Table 1: Natural deduction system for propositional linear logic

(Ax) AF A (TH T +T (LE)T, LF A

oy LEA AFB gy LEA*B A4 BEC

[LAF AxB LAFC
(my A ()~ (e 0,1

i Fr;ﬁim ey (e ATAUB Fflil—'_(? B.I'kC

(=D FFI—7 i :BB (—E) — AFjOABF BA —

(i) F 1 (1E) F;}A#

(0-rule) % (CLL only)
o L H? AAﬁ fx - A ey TP Fi !'_BA!B - A

A sequent I' = A is derivable in classical propositional linear logic, if it has a derivation
using the axioms and rules given in Table 1. If it has a derivation in which the 0-rule is not
used, it is derivable in intuitionistic propositional linear logic. We denote this by I' F; A.

In the interpretation of propositional linear logic which we give below a pre-coherence
space with approximation structure is assigned to each formula by induction on the structure
of the formula. Let to this end 5 be an assignment of pre-coherence spaces with approxima-
tion structure to the propositional variables. The meaning [A], of a formula A with respect



to the assignment 7 is then defined as follows.

[[O‘]]N = 77(04)7
[[J—]]n = [[T]]n =1,

[[0]]77 = [[1]]77 =S8,

[AT B]]n = [[A]]n X [[B]]m
[AU B]]n = [[A]]n b [[B]]U7
[Ax B], = [A], @ [B],,

[A — B]]n = [[[A]]n e [[B]]n]v
['A],; = p([Al)-

A sequence I' = Ay, ..., A, is interpreted by [['], = [A1], @ --- @ [4,],, if n > 1, and
[['], = 1L, otherwise, and a sequent I' = A is interpreted by the collection of all linear
maps from [I'], to [A],, which we denote by [I' F A],. A sequent I' - A is valid in the
pre-coherence space with approximation structure model, written PCA = 1"+ A, if [I' - A],
is not empty, for every assignment 7 of pre-coherence spaces with approximation structure
to propositional variables.

Theorem 3.1 Let I' be a finite sequence of formulae of propositional linear logic and A be
a formula of propositional linear logic such that I'tr A. Then PCAET - A.

The proof of the theorem is straightforward and will be skipped here. Note that if [I'],, is
empty, then [I' - A], contains exactly the empty map, i.e., [['F A], is the one-point space.
If both [I'], and [I' - A], are not empty, then the same must be true for [A],.

Theorem 3.2 Let I' be the emply sequence and n be an assignment of pre-coherence spaces
with approximation structure to propositional variables such that n(wg) is the empty space.
Then [I', a9 — 0 = 0], is not empty, but [I' - ag], is empty.

Proof: Note that [ag — 0], consists exactly of the empty map. Thus, [['],, [I', a9 — 0],
as well as [0],, are the one-point space. It follows that [I', a9 — 0 I 0],, is not empty. But
since [ag], is empty, [I' = ag], must be empty too.

Thus, the O-rule is not sound in the pre-coherence space with approximation structure
semantics. It follows that intuitionistic propositional linear logic is sound with respect to
this semantics, but classical propositional linear logic is not.

4 Final remarks

In this paper we presented a model of intuitionistic linear logic, which is not a model of
classical linear logic. The model is obtained by making use of some additional structure of
coherence spaces, which are used by Girard in his construction of a model for classical linear
logic. The additional structure is given by the fact that a coherence space can be represented
as the inverse limit of an w-cochain of finite subspaces. This cochain allows the introduction
of uniform levels of approximation for the elements of the coherence space. One advantage
of using this additional structure is that one can define spaces which are either coherence
spaces or empty so that the model is not only a type-theoretic one, but also a model of the
logic. On the other hand it destroys one of the central identities in Girard’s construction.



For a pre-coherence space with approximation structure D let Dt = [D —, S]. D' is
called the dual of D. Then one has with Lemma 2.11 that for every ¢ > 0 and every f € Dt
with nonempty trace,

Tr f={(p,q) € D" xS? | qC f(p)}
={(p,T)|pe D’ AT = f(p)}
= Tr([f19),

since tk(T) = 1. Thus [-]¢ = [-]%, for all i > 0, which means that all coprimes of D+ have the
same rank.

In Girard’s coherence space model one has that the linear function space [D —, F] is
isomorphic to (D ® E1)%, which is no longer true in the case of coherence spaces with
approximation structure, since (D @ E1)L has always a trivial approximation structure,
which need not be the case for [D —, E].
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