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1. Introduction

Multifunctions have been used with great success in applied
mathematics and logic (in particular modal and temporal logic).



2. Framework

We are working in the framework of effectively given topological
T0 spaces. Let

I T be a topological T0 space with countable basis

B = {B0,B1, . . .}.



We think of the basic open sets as elementary predicates that are
easy to encode.
In general it is difficult to deal with set inclusion in an effective
framework. In most cases we can use a stronger relation on the
codes of basic open sets instead.

Definition
A transitive relation ≺B on ω is a strong inclusion, if for all
m, n ∈ ω

m ≺B n ⇒ Bm ⊆ Bn.

Assume further that

I ≺B is r.e.

I B is a strong basis, i.e., the property of being a base holds
with respect to ≺B instead of ⊆.



Since T is T0, every point y ∈ T is uniquely determined by its
neighbourhood filter

N (y) = [{Bn | y ∈ Bn }].

I Assume that for all y ∈ T , { n ∈ ω | y ∈ Bn } is r.e.



This gives rise to an indexing x of T with the following properties

I Given i , we can enumerate all n with xi ∈ Bn, uniformly in i .

I Given an index of a recursive sequence a0 �B a1 �B · · · ,
if {Baν | ν ∈ ω } is a strong base of N (y), for some y ∈ T ,
we can compute an index of y .

Note. In general, x is only a partial map, i.e., not every number is
an index of a point of T .



3. How to encode sets.

Since there are uncountably many subsets X of T , not every
subset will be encodeable.



a) Encode an enumeration procedure for X .

I Enumerate all indices of all points of X

Definition
X is completely enumerable (c.e.) if there is some r.e. set A such
that for all i ∈ dom(x)

i ∈ A ⇔ xi ∈ X .

Every r.e. index of A is called c.e. index of X .

I Enumerate at least one index for every point in X .

Definition
X is enumerable if there is some r.e. set A ⊆ dom(x) with

X = { xi | i ∈ A }.

Every r.e. index of A is called enumeration index of X .



By enumerating all elements of a set we have effective access to all
of them. This limits of course the kind of sets we can deal with in
a computable way. Sometimes it is sufficient to enumerate a
generating part of X or certain properties of the points of X .

b) Density indices

Definition
X is effectively dense if there is some enumerable dense subset Y
of X . Any enumeration index of Y is called density index of X .

Lemma
Given an enumeration index of X , we can compute a density index
of X . The converse is not true, in general.



c) Covering indices

Definition
X is effectively covered if the set { n | Bn ∩ X 6= ∅ } is r.e. Every
r.e. index of this set is called covering index of X .

Lemma
Given a density index of X , we can compute a covering index of X .
The converse is not true, in general.



d) Finite covering indices

Let D be a canonical indexing of all finite subsets of ω.

Definition
X has a computable finite cover if the set

{ i | X ⊆
⋃
{Ba | a ∈ Di } }

is r.e. Every r.e. index of this set is called finite covering index of
X .



A finite covering index codes a procedure that enumerates all finite
covers of X . Therefore one needs a stronger property than just
compactness to compute a finite covering index from a covering
index of X .

Definition
X is strongly effectively compact if there is a total computable
function g so that for every covering index i of X , g(i) is an r.e.
index of

{ n | Dn ⊆ Wi ∧ X ⊆
⋃
{Ba | a ∈ Dn } }

.

Lemma
Let X be strongly effectively compact. Then, given a covering
index of X , we can compute a finite covering index of X .



In important special cases density indices can be obtained from
covering indices and enumeration indices from density indices.

Definition
T is constructively complete if for every computable sequence
a0 �B a1 �B · · · , there is a point y ∈ T such that {Baν | ν ∈ ω }
is a strong base of N (y).

Proposition

Let T be constructively complete and X ⊆ T be closed. Then,
given a covering index of X , we can compute a density index of X .

Proposition

Let T consist of the computable points of an effectively given
continuous poset. Then, given a density index of X , we can
compute an enumeration index of X .



Note that in general X is not uniquely determined by the indices
considered: different sets can have the same index. We think of X
as being given by other means. We generate only certain
properties of it.



4. Effective maps

Usually a map is defined extensionally using set theory. In recursive
mathematics an extensionally given map can be described
intensionally

y
F−→ F (y)

↑ ↑
i

f−→ f (i).

The function f computes a name of F (y) from the code of a
procedure enumerating properties of the argument y .

The map F is called effective in this case.



In our case F (xi ) is a set which needs not be uniquely determined
by the index f (i). As just said, we think of F (xi ) as given by other
(e.g. classical) means. The value f (i) codes useful information
about F (xi ).

Question: Is every effective multifunction continuous?



5. Continuity of multifunctions

There are several continuity notions for multifunctions.

I Lower semicontinuity (lsc)

Definition

F : T ⇒ T ′ is lsc ⇔
(∀y ∈ T )(∀U ∈ τ ′)[F (y) ∩ U 6= ∅

⇒ (∃V ∈ N (y))(∀z ∈ V )F (z) ∩ U 6= ∅]
⇔ (∀U ∈ τ ′)F−(U) ∈ τ,

where F−(U) = { z ∈ T | F (z) ∩ U 6= ∅ }.



In a second countable space every open set is a countable union of
basic open sets. This gives rise to the following notion of being
effectively open.

Definition
O ∈ τ is Lacombe open if there is some r.e. set A so that

O =
⋃

{Ba | a ∈ A }.

Any r.e. index i of A is called Lacombe index of O. We write
O = Lτ

i .

Definition
F : T ⇒ T ′ is effectively lsc if there is some total computable
function g so that

F−(B ′
n) = Lτ

g(n).



I Upper semicontinuity (usc)

Definition

F : T ⇒ T ′ is usc ⇔
(∀y ∈ T )(∀U ∈ τ ′)[F (y) ⊆ U

⇒ (∃V ∈ N (y))(∀z ∈ V )F (z) ⊆ U]

⇔ (∀U ∈ τ ′)F+(U) ∈ τ,

where F+(U) = { z ∈ T | F (z) ⊆ U }.



We know that U is the union over a not necessarily effective list of
basic open sets. If we want to proceed as above in defining
effective usc we would have to require that we can compute a
Lacombe index for F+(U) relative to any listing of basic open sets
whose union is U. We do not want to do this. Instead we restrict
ourselves to maps F : T ⇒ T ′ with F (z) being compact, for every
z ∈ T . In this case it is sufficient to consider only finite unions U
of basic open sets.

Let
Un =

⋃
{Ba | a ∈ Dn }.

Definition
A compact-valued map F : T ⇒ T ′ is effectively usc if there is
some total computable function g so that

F+(U ′
n) = Lτ

g(n).



Note that {F−(B ′
n) | n ∈ ω } and {F+(U ′

n) | n ∈ ω }, respectively,
are subbases of topologies F−(τ ′) and F+(τ ′). Moreover,

I F is effectively lsc ⇔ F−(τ ′) ⊆e τ

I F is effectively usc ⇔ F+(τ ′) ⊆e τ

where a topology η on T with subbasis {Cn | n ∈ ω } is effectively
coarser than τ (η ⊆e τ) if there is a total computable function g
with

Cn = Lτ
g(n),

for n ∈ ω.



A condition that forces a topology η on T to be effectively coarser
than the given topology τ :

Definition
Let η be a topology on T with subbasis {Cn | n ∈ ω }. A pair of
(s, r) of computable functions is a noninclusion realizer of τ with
respect to η if

I xi ∈ Cm ⇒ xi ∈ Ms(i ,m) ⊆ Cm

I If, in addition, Bn 6⊆ Cm, then xr(i ,n,m) ∈ Bn \Ms(i ,m).

Here, M is a numbering of the c.e. sets.



Definition

I T is recursively separable if it has an enumerable dense subset.

I η is a Mal’cev topology on T if it has a subbasis of c.e. sets.

Theorem
Let T be recursively separable and η be a Mal’cev topology on T .
Then, if τ has a noninclusion realizer with respect to η, then
η ⊆e τ .

The converse implication holds as well.

Lemma
Let τ have a noninclusion realizer with respect to τ . Then, if
η ⊆e τ then τ has a noninclusion realizer with respect to η.



Note.

I If F : T ⇒ T ′ is effective with respect to covering indices,
then F−(B ′

n) is c.e., uniformly in n. Thus F−(τ ′) is a Mal’cev
topology on T .

I If F : T ⇒ T ′ is compact-valued and effective with respect to
finite covering indices, then F+(U ′

n) is c.e., uniformly in n.
Thus F+(τ ′) is a Mal’cev topology on T .

Thus, in order to obtain that F is effectively lsc or usc,
respectively, we have to ensure that τ has a noninclusion realizer
with respect to F−(τ ′) and F+(τ ′).



We will now study important special cases and see when such
realizers exist.

I Effectively given continuous posets with the Scott topology

Proposition

Let T consist of the computable points of an effectively given
continuous poset. The Scott topology σ has a noninclusion realizer
with respect to any Mal’cev topology on T .

Theorem
Let T consist of the computable points of an effectively given
continuous poset and F : T ⇒ T ′. Then

I F is effective with respect to covering indices iff F is
effectively lsc.

I If F is compact-valued. Then F is effective with respect to
finite covering indices iff F is effectively usc.



I Recursively separable recursive metric spaces

Definition

I X ⊆ T has an effective complement exhaustion if the set

{ n | Bn ∩ X = ∅ }

is r.e. Any r.e. index of this set is called complement
exhaustion index of X .

I A pair 〈i , j〉 is a strong covering index of X if i is a covering
and j a complement exhaustion index of X .

Theorem
Let T ,T ′ be recursively separable recursive metric spaces and
F : T ⇒ T ′ be effective with respect to strong covering indices.
Then τ has a noninclusion realizer with respect to F−(τ ′) and
hence F is effectively lsc.



Definition
The pair 〈i , j〉 is a strong finite covering index of X if i is a finite
covering and j a covering index of X .

Proposition

Let T ,T ′ be recursively separable recursive metric spaces and
F : T ⇒ T ′ be compact-valued. If F is effective with respect to
strong finite covering indices, then τ has a noninclusion realizer
with respect to F+(τ ′) and hence F is effectively usc.



As we will see now, F is also effectively lsc in this case.

Lemma
Let T be a recursively separable recursive metric space and X ⊆ T
be compact. If X has a finite covering index i , then X also has an
effective complement exhaustion, uniformly in i .

Theorem
Let T ,T ′ be recursively separable recursive metric spaces and
F : T ⇒ T ′ be compact-valued. If F is effective with respect to
strong finite covering indices, then F is both effectively lsc and
usc, i.e., F is effectively continuous.



Remember that if a set X is strongly effectively compact, then
from a covering index of X we can compute a finite covering index
of X .

Corollary

Let T ,T ′ be recursively separable recursive metric spaces and
F : T ⇒ T ′ be effective with respect to covering indices. If F (xi )
is strongly effectively compact, uniformly in i , then F is effectively
continuous.



I Outer semicontinuity (osc)

Definition
Let F : T ⇒ T ′.

I lim supy→ȳ F (y) =
{ u ∈ T ′ | (∃yν → ȳ)(∃uν → u)uν ∈ F (yν) }

I F is osc at ȳ if lim supy→ȳ F (y) ⊆ F (ȳ).

Theorem

I F osc everywhere ⇔

(∀ȳ ∈ T )(∀u /∈ F (ȳ))(∃W ∈ N (u))(∃V ∈ N (ȳ))F (V )∩W = ∅.

I F osc everywhere ⇔ graph(F ) closed in T × T ′.



Definition
F is effectively osc if there are computable maps h, k such that

(∀i ∈ dom(x))(∀j ∈ dom(x ′))[x ′j /∈ F (xi ) ⇒
x ′j ∈ B ′

h(i ,j) ∧ xi ∈ Bk(i ,j) ∧ F (Bk(i ,j)) ∩ B ′
h(i ,j) = ∅].

Theorem
F is effectively osc iff graph(F ) is Lacombe closed, i.e., graph(F )c

is Lacombe open.

Theorem
Let F : T ⇒ T ′ be effective with respect to density indices and F c

with F c(y) = F (y)c be effective with respect c.e. indices. Then F
is effectively osc.



Remember that from a density index of X we can compute a
covering index of X . Thus,

F : T ⇒ T ′ effective with respect to density indices

⇒ F effective with respect to covering indices

⇒ F effectively lsc,

if T consists of the computable points of an effectively given
continuous poset.

Moreover, in this case:

Theorem (Rice/Shapiro)

X is c.e. iff X is Lacombe open.

Corollary

Let T consist of the computable points of an effectively given
continuous poset. Let F : T ⇒ T ′ be effective with respect to
both density and Lacombe-closure indices. Then F is effectively lsc
as well as osc.



Note that for closed X ⊆ T ,

X has effective complement exhaustion ⇒ X c is c.e.

Moreover, a c.e. index of X c can be computed from a complement
exhaustion index of X . Thus, we have for F : T ⇒ T ′,

F effective with respect to both density and exhaustion indices

⇒ F effective with respect to strong covering indices

⇒ F effectively lsc,

if T ,T ′ are recursively separable recursive metric spaces.



Corollary

Let T ,T ′ be recursively separable recursive metric spaces and let
F : T ⇒ T ′ be closed-valued. Then, if F is effective with respect
to both density and complement exhaustion indices, then F is both
effectively lsc and osc.

If, in addition, F (xi ) is strongly effectively compact, uniformly in i ,
then F is also effectively usc.


