
On the expressive power of existential quantification in

polynomial-time computability

(Extended abstract)

Dieter Spreen
Fachbereich Mathematik, Theoretische Informatik

Universität Siegen, 57068 Siegen, Germany
Email: spreen@informatik.uni-siegen.de

It is the aim of this paper to study the expressive power of bounded existential quan-
tification in polynomial-time computability. Our goal was to characterize nondeterministic
polynomial-time computations in a machine-independent way. The following considerations
are intended to make our idea clear.

Let Γ be the finite alphabet {0, 1} and IN be the following set of initial functions from
Γ∗ to Γ∗:

• (Constant) ε (the empty word considered as a zero-ary function).

• (Zero function) Z(x) = ε.

• (Successors) S0(x) = x0 and S1(x) = x1.

• (Projections) Un
i (x1, . . . , xn) = xi, for 1 ≤ i ≤ n.

• (Smash function) x#y = 1|x|·|y|, where |x| denotes the length of x.

Then it is well known that the smallest set [IN; SUB,LR] of functions from Γ∗ to Γ∗

containing IN and closed under substitution and limited recursion is exactly the collection
PF of all functions computable in polynomial time on a deterministic Turing transducer
[6, 17]. Note that in recent years several other machine-independent characterizations of PF
have been presented [2, 7, 9, 8]. In what follows we will work with the above characterization.
But it should be obvious that characterizations in which a different set of initial functions
or other closure operations are chosen can be used as well.

Now, for a set A ⊆ Γ∗, let σA : Γ∗ ⇀ Γ, defined by

σA(x) =

{
1 if x ∈ A,
undefined otherwise,

be the semi-characteristic function of A. Then

A ∈ NP ⇔ σA ∈ [IN; SUB,LR,E1/2],

where the bounded half-quantifier E1/2 is the following operator. For functions f : (Γ∗)2 ⇀ Γ∗

and b : Γ∗ ⇀ Γ∗, E1/2(f, b) is the map with

E1/2(f, b)(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ dom(b) and there is some y ∈ Γ∗

such that |y| ≤ |b(x)| and f(x, y) = 1,
undefined otherwise.

1

is used as an additional closure operation.
This shows that the bounded half-quantifier adds nondeterministic computations to the

class [IN; SUB,LR]. In the present paper we characterize the function class [IN; SUB,LR,

E1/2]. Furthermore, we consider the class [IN; SUB,LR,E] obtained similarly by adding
the bounded (full) quantifier E. For functions f : (Γ∗)2 ⇀ Γ∗ and b : Γ∗ ⇀ Γ∗, E(f, b) is the
function given by

E(f, b)(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ dom(b) and there is some y ∈ Γ∗

such that |y| ≤ |b(x)| and f(x, y) = 1,
0 otherwise.

Unbounded versions of both quantifiers have been applied in various areas of computabil-
ity theory with great success. A modification (continuous extension) of the half quantifier
has been used by Plotkin to characterize the Ershov-Scott higher type partial computable
functionals over the natural numbers [12]. Recursion over structures extended (among oth-
ers) by the full quantifier can be used to give a natural and elegant treatment of positive,
elementary induction. In the case of the natural numbers various classes of functions and
relations like the hyperarithmetical functions, the arithmetical relations and the Π1

1 relations
can be identified. (See Moschovakis [10] for a general treatment.) In higher type recursion
theory the important class of normal type 2 functionals is just the collection of functionals
in which E is recursive [11].

Let us first study the effect of adding the bounded half-quantifier to the closure operations
SUB and LR.

Theorem 1 [IN; SUB,LR,E1/2] is the class PNPF of functions from Γ∗ to Γ∗ computable
by a polynomial-time-bounded deterministic oracle Turing transducer with an NP set as
oracle, which works in such a way that the machine in case of a negative oracle answer
starts an infinite deterministic computation in the course of which the oracle is never queried
again.

This means that the function algebra [IN; SUB,LR,E1/2] allows the specification of
polynomial-time algorithms in which decision problems can be solved by using the full power
of nondeterministic polynomial-time computations, whereas all other kind of computations
proceed deterministically.

Obviously, PF ⊆ PNPF ⊆ NPSV, where the last set is the collection of all functions
from Γ∗ to Γ∗ computable by a nondeterministic polynomial-time-bounded Turing trans-
ducer which on all finite computation paths computes the same result. The function class
NPSV as well as the class NPMV of multi-valued functions from Γ∗ to Γ∗ computable by a
nondeterministic polynomial-time-bounded Turing transducer have first been studied in [5].

The properness of these inclusions is connected with certain unsolved problems in com-
plexity theory.

Lemma 2 1. P = NP ⇒ PNPF = NPSV.

2. PNPF = NPSV ⇒ P = NP ∩ co−NP.

3. PNPF �= NPSV ⇔ NP contains P-inseparable sets.

Note that two subsets A and B of Γ∗ are P-inseparable if no set L with the property
A ⊆ L ⊆ Γ∗ \ B is in P.

2

As has been shown in [15], PNPF is the class of functions from Γ∗ to Γ∗ which are
computed by pairs (N, D) consisting of a nondeterministic polynomial-time-bounded Turing
acceptor N and a deterministic polynomial-time-bounded Turing transducer D in such a
way that first the acceptor N starts its computation and only if it halts in an accepting state
after polynomial many steps, the transducer starts to work. In any other case the combined
machine diverges.

Deterministic polynomial-time-bounded parallel , or nonadaptive, oracle Turing compu-
tations, where all queries are listed before any of them is made, have been studied in [16, 13].
But in that case also the information obtained from a negative oracle answer is used, which
means that the computation is no longer purely nondeterministic.

Theorem 1 and the above characterization of PNPF implies that functions in [IN; SUB,

LR,E1/2] can be brought into a normal form.

Theorem 3 For every function f ∈ [IN; SUB,LR,E1/2] there are total functions g, h, b ∈
[IN; SUB,LR] such that f = SUB(pr(2)1 , h,E1/2(g, b)).

The next result exhibits some useful properties of the class PNPF . Let to this end for
a set A ⊆ Γ∗, χA : Γ∗ → Γ, defined by

χA(x) =

{
1 if x ∈ A,
0 otherwise

be the characteristic function of A. Moreover, call a function f : Γ∗ ⇀ Γ∗ polynomial-time
invertible if there is a function g ∈ DPF such that f(g(y)) = y, for all y ∈ range(f).

Proposition 4 Let A be a subset of Γ∗. Then the following statements hold:

1. A ∈ NP ∩ co−NP ⇔ χA ∈ PNPF .

2. A ∈ NP ⇔ (∃f ∈ PNPF)A = range(f) ∧ f is polynomial-time invertible.

3. A ∈ NP ∩ co−NP
⇔ (∃f ∈ PNPF)A = range(f) ∧ f is total ∧ f is polynomial-time invertible.

4. A ∈ P ⇔ (∃f ∈ PF)A = range(f) ∧ f is total ∧ f is polynomial-time invertible.

The remark preceding Theorem 3 seems to indicate that machines computing functions
in PNPF are less powerful than machines computing functions in NPSV. Let us now study
the expressive power of the bounded full quantifier.

Theorem 5 [IN; SUB,LR,E] is the class PF(PH) of functions from Γ∗ to Γ∗ computable
by a polynomial-time-bounded oracle Turing transducer which may consult a set in the
polynomial-time hierarchy PH as oracle.

As is well known PH =
⋃

i∈ω Σp
i , where the classes Σp

i are inductively defined by Σp
0 = P

and Σp
i+1 = NP(Σp

i), for i ≥ 0. Theorem 5 is a consequence of the following lemma.

Lemma 6 Let L0 = [IN; SUB,LR] and for i ≥ 0,

Li+1 = [IN∪{E(f, b) | f, b ∈ Li }; SUB,LR].

Then Li = PF(Σp
i).

3

The classes PF(Σp
i) have also been considered in [4]. Moreover, they have been charac-

terized by Bellantoni [1] with the help of bounded minimization: A function is in PF(Σp
i)

just if it can be obtained from initial functions in IN by substitution, limited recursion and
bounded minimization, where the last operation can be nested at most i-times. This re-
sult should be compared with the above lemma, where instead of minimization the weaker
operation of existential quantification is used.

Note that NPSV ⊆ PF(PH). In [15] it is shown that

NPSV �= PF(PH) ⇔ NP �= co−NP.

Though the half quantifier has turned out to be quite powerful in higher type compu-
tations, using its bounded version as a further closure operator in addition to substitution
and limited recursion for the generation of functions out of the initial functions in IN re-
sults in exactly the restrictions of the polynomial-time computable functions to sets in NP.
The computational model of this function class seems to be rather weak. On the other
hand, employing the bounded version of the full quantifier instead leads to the set of func-
tions computable by a polynomial-time-bounded Turing machine that may consult a set in
the polynomial-time hierarchy as oracle, which is quite a powerful model of computation,
probably stronger than single-valued nondeterministic polynomial-time computations. If one
strengthens the bounded half-quantifier by allowing parallel existential queries, one obtains a
machine-independent characterization of the class NPMV of multi-valued nondeterministic
polynomial-time computable functions.

Multi-valued functions form Γ∗ to Γ∗ are partial maps from Γ∗ to 2Γ∗
. For multi-

valued functions k1, . . . , kn of arity m and h of arity n the substitution SUB(h, k1, . . . , kn) of
k1, . . . , kn in h is defined by

SUB(h, k1, . . . , kn)(x̄) = h(k1(x̄), . . . , kn(x̄))

=
⋃

{h(y1, . . . , yn) | yi ∈ ki(x̄), for i = 1, . . . , n },

for all x̄ ∈ (Γ∗)m such that ki(x̄) is defined, for i = 1, . . . , n. In any other case the function
SUB(h, k1, . . . , kn) remains undefined.

The operation of limited recursion is lifted to multi-valued functions as follows. For
functions g of arity n, g0, g1 of arity n+2 and b of arity n+1, LR(g0, g1, g2, b) is the uniquely
determined function h of arity n + 1 which satisfies the following three conditions:

1. h(x̄, ε) = { z ∈ g(x̄) | |z| ≤ |b(x̄, ε)| }, if g(x̄) and b(x̄, ε) are both defined and this set is
nonempty.

2. For i = 0, 1, h(x̄, yi) = { z ∈ gi(x̄, y, h(x̄, y)) | |z| ≤ |b(x̄, yi)| }, if h(x̄, y), gi(x̄, y, h(x̄, y))
and b(x̄, yi) are defined and this set is nonempty.

3. In any other case h(x̄, y) is undefined.

Note that for a set A ⊆ Γ∗ and an element z ∈ Γ∗ we write |z| ≤ |A| to mean that
|z| ≤ |x|, for some x ∈ A.

The parallel quantifier E‖ is defined in the following way. For functions f of arity 2 and b

of arity 1, E‖(f, b) is the function of arity 1 with E‖(f, b)(x) ⊆ {0, 1} such that the following
three conditions hold:

1. 0 ∈ E‖(f, b)(x), if x ∈ dom(b) and there is some y ∈ Γ∗ such that |y| ≤ b(|0x|) and
1 ∈ f(0x, y).

4

2. 1 ∈ E‖(f, b)(x), if x ∈ dom(b) and there is some y ∈ Γ∗ such that |y| ≤ b(|1x|) and
1 ∈ f(1x, y).

3. In any other case E‖(f, b)(x) is undefined.

Single-valued functions like the initial functions in IN are considered as special multi-
valued functions by identifying x with {x}.

Theorem 7 [IN; SUB,LR,E‖] = NPMV.

For the proof of this result we use the fact that for every polynomial-time-bounded
nondeterministic Turing transducer a deterministic polynomial-time computable function f
can be constructed such that f(x) ∈ SAT, for x ∈ Γ∗, exactly if the Turing transducer on
input x stops after polynomially many steps with the output written on the output tape [3].
The function f can be constructed in such a way that from any sequence y witnessing that
f(x) ∈ SAT one can compute in polynomial time a path in the computation tree of the Turing
transducer on input x. From every such path the result of the computation can easily be
read off. Moreover, given a query f(x) to SAT one can readily compute the number n(x) of
its propositional variables. Since a formula ϕ(x1, . . . , xn) is satisfiable if and only if at least
one of the two shorter formulas ϕ(0, x2, . . . , xn) or ϕ(1, x2, . . . , xn) is satisfiable, a witness y

for f(x) ∈ SAT can be computed by n(x) applications of the parallel quantifier E‖.
A variety of other characterizations of NPMV has been presented in [14].

References

[1] S. Bellantoni, Predicative recursion and the polytime hierarchy, in: P. Clote and J. Rem-
mel, eds., Feasible Mathematics II , Birkhäuser, Boston, 1995.

[2] S. Bellantoni and S. Cook, A new recursion-theoretic characterization of the polytime
functions, Computational Complexity 2 (1992) 97–110.

[3] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. 3rd Ann. ACM
Symp. on Theory of Computing , Association for Computing Machinery, New York, 1971,
151–158.

[4] S. R. Buss, Bounded Arithmetic, Bibliopolis, Napoli, 1986.

[5] R. V. Book, T. J. Long and A. L. Selman, Quantitative relativizations of complexity
classes, SIAM J. Comput. 13 (1984) 461–487.

[6] A. Cobham, The intrinsic computational difficulty of functions, in: Y. Bar-Hillel, ed.,
Logic, Methodology and Philosophy of Science II , North-Holland, Amsterdam, 1965,
24–30.

[7] J.-Y. Girard, A. Scedrov and P. Scott, Bounded linear logic: a modular approach to
polynomial time computability, Theoret. Comput. Sci. 97 (1992) 1–66.

[8] D. Leivant, A foundational delineation of poly-time, Inform. and Computation 110
(1994) 391–420.

[9] D. Leivant and J.-Y. Marion, Lambda calculus characterizations of poly-time, Fund.
Inf. 19 (1993) 167–184.

5

[10] Y. N. Moschovakis, Abstract recursion as a foundation for the theory of algorithms, in:
M. M. Richter et al., eds., Computation and Proof Theory, Proc., Logic Colloq. Aachen
1983, Part II , Lec. Notes Math. 1104, Springer-Verlag, Berlin, 1984, 289–364.

[11] D. Normann, Recursion on the Countable Functionals, Lec. Notes Math. 811, Springer-
Verlag, Berlin, 1980.

[12] G. D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5
(1977) 223–255.

[13] A. L. Selman, A taxonomy of complexity classes of functions, J. Comput. Systems Sci.
48 (1994) 357–381.

[14] D. Spreen, On functions computable in nondeterministic polynomial time: some char-
acterizations, in: E. Börger et al., eds, CSL’87, 1st Workshop on Computer Science
Logic, Proc., Lec. Notes Comput. Sci. 329, Springer-Verlag, Berlin, 1988, 289–303.

[15] D. Spreen and H. Stahl, On the power of single-valued nondeterministic polynomial time
computations, in: E. Börger, ed., Computation Theory and Logic, Lec. Notes Comput.
Sci. 270, Springer-Verlag, Berlin, 1987, 403–414.

[16] K. Wagner, On restricting the access to an NP-oracle, in: T. Lepistö and A. Salomaa,
eds., Automata, Languages and Programming, 15th Intern. Conf., Proc., Lec. Notes
Comput. Sci. 317, Springer-Verlag, Berlin, 1988, 682–696.

[17] K. Weihrauch, Teilklassen primitiv-rekursiver Wortfunktionen, Bericht Nr. 91, Gesell-
schaft f. Mathematik u. Datenverarbeitung, St. Augustin, 1973.

6

