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1 Introduction

Domains introduced by Dana Scott [11] and independently by Yuri L. Ershov [3] are a struc-
ture modelling the notion of approximation and of computation. A computation performed
using an algorithm proceeds in discrete steps. After each step there is more information
available about the result of the computation. In this way the result obtained after each step
can be seen as an approximation of the finite result.

Unlike in analytical mathematics, where natural metrics are at hand to measure the
grade of an approximation, the theory of approximation based on domains was mainly of
a qualitative nature. The situation started to change when M. B. Smyth [12] discovered
that there is a notion of distance in domains, but it is necessarily not symmetric. Similarly,
S. Matthews [8, 9] found that canonical metrics defined for the maximal elements of certain
domains can be extended to the whole domain by allowing that points may have a positive
self-distance, which is considered as the weight of that point. He also showed that there is
a close connection between a subclass of the quasi metrics used by Smyth and his partial
metrics: each partial metric defines a weighted quasi metric and vice versa. In subsequent
studies [10, 13, 15] weights turned out to be a powerful tool for the introduction of partial
metrics. A special class of weights are the measurements introduced by K. Martin in his
thesis [7]. They are strongly intertwined with the topological structure of a domain.

An obvious question raised independently by R. Heckmann [6] and S. O’Neill [10] is
which domains are partial metrizable, i.e., on which domains exists a partial metric such
that its topology coincides with the Scott topology of the domain. In [10] O’Neill showed
that prime-algebraic Scott domains are partial metrizable. This result has recently been
extended to the class of ω-continuous domains, independently by M. Schellekens [13] and
P. Waszkiewicz [15].

It follows, of course, that also the product and, if it is ω-continuous again, the space of all
Scott continuous functions between such domains is partial metrizable, but if one constructs
a partial metric on these domains by applying the definitions given in the above mentioned
proofs one will not make use of the partial metrics coming with the components.

In this paper we study three important domain constructions, Cartesian products, func-
tion spaces and inverse limits of ω-chains of domains with embedding/projection pairs as
connecting morphisms, and show how a quasi metric and a measurement, respectively, for
the composed spaces can be obtained from the corresponding maps coming with the compo-
nents. The domains we consider are continuous directed-complete partial orders. In the case
of the function space construction we als require the range space to be bounded-complete.
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For quasi-metrics our constructions resemble two well-known definitions from analytical
mathematics: the sup metric and the �1 metric. In the measurement case only the latter
approach seems to work. It remains the question in which way partial metrics can be
transferred under the domain constructions considered here. Unfortunately, our approaches
seem not to work in that case. Distance functions defined as in the quasi-metric case have
nice properties, but it is not clear whether they are partial metrics again.

As has been demonstrated by Waszkiewicz [15] every measurement on a continuous poset
which induces the Scott topology everywhere on the domain and satisfies a weak modularity
law induces a partial metric on the poset in a natural way such that the partial metric
topology coincides with the Scott topology. Note that the modularity condition generalizes
a requirement used by O’Neill [10]. After having not been able to construct partial metrics on
the composed domains directly from those coming with the components, this result motivated
us to consider measurements instead. We show that the two properties used by Waszkiewicz
do transfer under our constructions, thus giving rise to a canonical partial metric on the
more complex domains.

2 Definitions and results

2.1 Quasi-metrics

Let (D,�) be a partial order with smallest element ⊥. A subset S of D is called consistent
if it has an upper bound. S is directed, if it is nonempty and every pair of elements in S has
an upper bound in S. D is a directed-complete partial order (cpo) if every directed subset S
of D has a least upper bound

⊔
S in D, and D is bounded-complete if every consistent subset

has a least upper bound in D. In a bounded-complete cpo any consistent pair {x, y} has a
least upper bound, written x � y. Moreover, all pairs {x, y} have a greatest lower bound,
written x� y. Standard references for domain theory and its applications are [5, 4, 1, 14, 2].

If (D,�) is a cpo and x, y ∈ D then one says that x approximates y, and writes x � y
if for every directed subset S of D with y � ⊔

S there is some u ∈ S such that x � u. The
relation � is transitive. It is also called way-below relation.

Definition 2.1 Let (D,�) be cpo.

1. A subset Z of D is a basis of D if for any x ∈ D the set Zx = { z ∈ Z | z � x } is
directed and x =

⊔
Zx.

2. D is called continuous if it has a basis.

As is well-known, on each cpo there is a canonical topology σ: the Scott topology. A
subset X is open, if it is upwards closed with respect to � and intersects each directed subset
of D of which it contains the least upper bound. In case that D is continuous with basis Z,
this topology is generated by the sets ↑↑{z}(= { y ∈ D | z � y }) with z ∈ Z.

The product D×E of two cpo’s D and E is the Cartesian product of the underlying sets
ordered coordinatewise. If both D and E are continuous, the same holds for D × E.

Definition 2.2 Let D and E be cpo’s. A map f : D → E is said to be Scott continuous if
it is monotone and for any directed subset S of D,

f(
⊔

S) =
⊔

f(S).
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It is well-known that Scott continuity coincides with topological continuity. Denote the
collection of all continuous maps from D to E by [D → E]. Endowed with the pointwise
order , that is, f �p g if f(x) � g(x) for all x ∈ D, it is a cpo again. If D and E are
continuous, [D → E] is also continuous.

Definition 2.3 Let D and E be cpo’s. A pair (e, p) of maps e ∈ [D → E] and p ∈ [E → D]
is called an embedding/projection pair if the following two conditions hold:

• p ◦ e = idD, the identity on D

• e ◦ p �p idE .

The map e is called embedding and p projection.

By an ω-chain of continuous cpo’s we understand a diagram of the form Δ = D0
p0← D1

p1←
· · · , where the Di are continuous cpo’s and the maps pi are projections. The inverse limit
of Δ is the set D∞ of all infinite sequences x̄ ∈ Πi∈ωDi such that xi = pi(xi+1), for all i ∈ ω.
Endowed with the componentwise partial order D∞ is a cpo again, which is continuous if all
the Di are continuous.

Definition 2.4 Let X be a set. A map d : X × X → [0,∞) is called a quasi metric if the
following three conditions hold for all x, y, z ∈ X:

• d(x, x) = 0

• d(x, y) = d(y, x) = 0 ⇔ x = y

• d(x, z) ≤ d(x, y) + d(y, z).

Every quasi metric d defines a canonical T0 topology τd on X, which is generated by the
sets

Bd
ε (x) = { y ∈ X | d(x, y) < ε }

with x ∈ X and ε > 0.
If D is a cpo and d is a quasi metric on D we say that d is appropriate for D, if τd = σD.
In what follows we will always assume that the range of a quasi metric is bounded by 1:

if necessary use d(x, y)/(1 + d(x, y)) instead of d(x, y). This transformation does not change
the topology of d.

Now, for i = 1, 2, let (Di, di) be continuous cpo’s with appropriate quasi metrics. We
will investigate how an appropriate quasi metric can be defined on D1 ×D2 from d1 and d2,
and similarly for the other constructions introduced above.

Theorem 2.5 Let D1 and D2 be continuous cpo’s with quasi metrics d1 and d2, respectively.
For (x, y), (x′, y′) ∈ D1 × D2 define

ď((x, y), (x′, y′)) = max{d1(x, x′), d2(y, y′)}

and

d̂((x, y), (x′, y′)) = d1(x, x′) + d2(y, y′).

Then ď and d̂ are both quasi metrics on D1 × D2 that are appropriate, if d1 and d2 are.
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Theorem 2.6 Let D1 be a continuous cpo with a countable basis Z and D2 be a bounded-
complete continuous cpo with a quasi metric d2. For f, g ∈ [D1 → D2] define d̃(f, g) and
d̄(f, g), respectively in the following way:

If Z is finite, say Z = {u0, . . . , un}, set

d̃(f, g) = max { d2(f(u), g(u)) | u ∈ Z }

and

d̄(f, g) =
n∑

i=0

d2(f(ui), g(ui)).

If Z is infinite, say Z = {u0, u1, . . . }, set

d̃(f, g) = sup { 2−(i+1) · d2(f(ui), g(ui)) | i ≥ 0 }

and

d̄(f, g) =
∞∑

i=0

2−(i+1) · d2(f(ui), g(ui)).

Then d̃ and d̄ are both quasi metrics on [D1 → D2], which are appropriate if d2 is.

Theorem 2.7 Let (Di, pi)i∈ω be an ω-chain of continuous cpo’s with quasi metrics di. For
x̄, ȳ ∈ D∞ set

d∞(x̄, ȳ) =
∞∑

i=0

2−(i+1) · di(xi, yi).

Then d∞ is a quasi metric on D∞, which is appropriate if all the di are.

2.2 Measurements

As follows from the definition, the notion of a quasi metric is obtained from that of a metric
by giving up the requirement that only the distance from a point to itself is zero, and the
symmetry requirement. In the case of partial metrics the first of these conditions is given
up as well, while the second one, symmetry, is kept.

Definition 2.8 Let X be a set. A map p : X × X → [0,∞) is a partial metric if the following
four conditions hold for all x, y, z ∈ X:

• x = y ⇔ p(x, x) = p(x, y) = p(y, y)

• p(x, x) ≤ p(x, y)

• p(x, y) = p(y, x)

• p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).
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With each partial metric a canonical T0 topology τp can be associated, which is generated
by the open balls

Bp
ε = { y ∈ X | p(x, y) < p(x, x) + ε },

with x ∈ X and ε > 0.
If D is a cpo and p is a partial metric on D the canonical topology τp of which coincides

with the Scott topology on D, we say that p is appropriate for D.
For partial metrics the self-distance p(x, x) of a point x needs not to be zero. It is

considered as the weight of x. As has been shown by O’Neill [10] weights satisfying a
modularity condition define a partial metric with the given weight as self-distance in a natural
way. This result has been improved by Waszkiewicz [15] for a special class of weights, called
measurements, which have been studied by Martin in his thesis [7] and which appear quite
naturally in this context.

Let D be a cpo and let [0,∞)op denote the set of the nonnegative reals endowed with
the converse of the natural order on the reals. Note that [0,∞)op is a continuos cpo. For a
monotone map μ : D → [0,∞)op and any x ∈ D, ε > 0 set

με(x) = { y ∈ D | y � x ∧ μ(y) < ε }.

The mapping μ is said to induce the Scott topology on a subset X of D, if for all U ∈ σ and
all x ∈ X with x ∈ U there is some ε > 0 such that x ∈ με(x) ⊆ U . Moreover, μ is called
weakly semimodular if for all consistent pairs x, y ∈ D and all upper bounds u of x and y
there exists a lower bound v of x and y such that

μ(u) + μ(v) ≤ μ(x) + μ(y).

Definition 2.9 Let D be a continuous cpo. A map μ : D → [0,∞)op is a measurement if it
is Scott continuous and induces the Scott topology on its kernel {x ∈ D | μ(x) = 0 }.

For a measurement μ : D → [0,∞)op the map dμ : D × D → [0,∞) defined by

dμ(x, y) = inf {μ(z) | z � x, y }

is the distance function associated with μ.

Proposition 2.10 (Waszkiewicz) Let D be a continuous cpo with a weakly semimodular
measurement μ : D → [0,∞)op that induces the Scott topology on D. Then the distance
function associated with μ is a partial metric which is appropriate for D.

For the constructions considered in the preceding section we shall now see how mea-
surements on the composed cpo’s can be defined from the measurements coming with the
components. Note here that the range of a measurement μ is always contained in the real
interval [0, μ(⊥)].

Theorem 2.11 Let D1 and D2 be continuous cpo’s with measurements μ1 and μ2, respec-
tively. For (x, y) ∈ D1 × D2 define

μ̌(x, y) = max{μ1(x), μ2(y)}

and

μ̂(x, y) = μ1(x) + μ2(y).

Then μ̌ and μ̂ are both measurements on D1 × D2 such that the following two statements
hold:
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1. If μ1 and μ2, respectively, induce the Scott topology on D1 and D2, then μ̌ and μ̂ both
induce the Scott topology on D1 × D2.

2. If μ1 and μ2 are weakly semimodular, the same is true for both μ̌ and μ̂.

Theorem 2.12 Let D1 be a continuous cpo with a countable basis Z and D2 be a bounded-
complete continuous cpo with a measurement μ2. For f ∈ [D1 → D2] define μ̄(f) in the
following way:

If Z is finite, say Z = {u0, . . . , un}, set

μ̄(f) =
n∑

i=0

μ2(f(ui))

and if Z is infinite, say Z = {u0, u1, . . . }, set

μ̄(f) =
∞∑

i=0

2−(i+1) · μ2(f(ui)).

Then μ̄ is a measurement on [D1 → D2] such the following two statements hold:

1. If μ2 induces the Scott topology on D2, then μ̄ induces the Scott topology on [D1 → D2].

2. If μ2 is weakly semimodular then μ̄ is as well.

Theorem 2.13 Let (Di, pi)i∈ω be an ω-chain of continuous cpo’s with measurements μi.
For x̄ ∈ D∞ define

μ∞(x̄) =
∞∑

i=0

2−(i+1) · μi(xi).

Then μ∞ is a measurement on D∞ such that the following two statements hold:

1. If for i ∈ ω, μi induces the Scott topology on Di, then μ∞ induces the Scott topology
on D∞.

2. If for i ∈ ω, μi is weakly semimodular, the same holds for μ∞.

Note that the above results for product and function spaces can easily be extended to
dependent sums and products.
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