F. T. Suttmeier Ch. Teichmann St. Schuß M. Alterauge

Theoretische Übungen (3) zur Vorlesung "Numerik I" im Wintersemester 2010/11 04.11.2010

Im folgenden sei $\mathbb{K} = \mathbb{C}$ oder $\mathbb{K} = \mathbb{R}$.

Definition: Der Spektralradius $\rho(A)$ einer Matrix $A \in \mathbb{K}^{n \times n}$ ist definiert als

$$\rho(A) = \max \{ |\lambda| : \lambda \in \mathbb{C} \text{ ist Eigenwert von } A \}.$$

Dabei heißt $\lambda \in \mathbb{C}$ Eigenwert von A, wenn es einen Eigenvektor $x \in \mathbb{C}^n \setminus \{0\}$ gibt mit $Ax = \lambda x$.

1. Man zeige:

Sei $A \in \mathbb{K}^{n \times n}$ symmetrisch bzw. hermitesch und positiv semi-definit. Sind $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0$ die Eigenwerte von A, so gilt

$$\lambda_n \|x\|_2^2 \le \bar{x}^T A x \le \lambda_1 \|x\|_2^2$$

für alle $x \in \mathbb{K}^n$.

2. Man zeige:

- i) Der Vektornorm $\|\cdot\|_{\infty}$ ist die Zeilensummennorm "zugeordnet".
- ii) Der Vektornorm $\|\cdot\|_2 = \|\cdot\|_e$ ist die Spektralnorm $\|\cdot\|_H$ zugeordnet.

3. Man zeige:

- i) Die Gesamtnorm $||| \cdot |||_G$ ist passend zu $|| \cdot ||_{\infty}$.
- ii) Die Euklidische Norm $|\|\cdot\||_E$ ist passend zu $\|\cdot\|_e = \|\cdot\|_2$.

4. Man bestimme zu

$$A = \begin{pmatrix} 2 & (-1) & 2 \\ -1 & 2 & -2 \\ 2 & -2 & 5 \end{pmatrix}$$

eine Matrix C, so dass

$$\tilde{A} = C^{-1}AC$$

Diagonalgestalt hat, wobei die Diagonalelemente die Eigenwerte von A sind.