Nichtlineare Optimierung — Übungsblatt 3

Dr. Klaus Schönefeld Naomi Schneider, M. Sc. Department Mathematik Fakultät IV, Universität Siegen

Wintersemester 2016/17

Zu bearbeiten bis zur Übung am 09.11.2016

Aufgabe 11

Gegeben sei die Menge $G = \left\{ x \in \mathbb{R}^4 \mid Ax = a, x \geq 0 \right\}$ mit

$$A = \begin{pmatrix} 1 & -1 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 2 & 0 & -2 & 10 \end{pmatrix}, \qquad a = \begin{pmatrix} 2 \\ 7 \\ 18 \end{pmatrix}$$

Man stelle (mit Begründung!) fest, welche der folgenden Vektoren Eckpunkte von G sind:

a)
$$x^1 = \begin{pmatrix} 10 \\ 7 \\ 0 \\ 0 \end{pmatrix}$$
, b) $x^2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, c) $x^3 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$, d) $x^4 = \begin{pmatrix} 9 \\ 7 \\ 0 \\ 0 \end{pmatrix}$.

Aufgabe 12

Beweisen sie folgende Aussage aus dem Lemma nach Satz 2.2 aus der Vorlesung:

Sei $G \subset \mathbb{R}^n$ konvex und $f : G \to \mathbb{R}$ differenzierbar. Dann ist f genau dann streng konvex auf G, wenn für alle $x, y \in G$ mit $x \neq y$ gilt:

$$f(x) - f(y) > \nabla f(y)^T (x - y).$$

Aufgabe 13

Zeigen Sie: Eine Menge $G \subset \mathbb{R}^n$ ist genau dann konvex (laut Definition aus der Vorlesung), wenn für beliebige Punkte $x^1, x^2 \in G$ ihre Verbindungsstrecke $[x^1, x^2]$ vollständig in G liegt.

Aufgabe 14

In der Vorlesung wurde bereits der Kegel der zulässigen Richtungen Z(x) definiert.

Weiterhin heißt ein Vektor $d \in Z(x)$ (*zulässige*) *Abstiegsrichtung* einer Funktion f in x, wenn ein T > 0 existiert mit f(x + td) < f(x) für alle $t \in (0, T]$.

Gegeben sei die lineare Optimierungsaufgabe

$$f(x) = -x_1 - x_2 \rightarrow \min!$$
 bei $x_1 + 2x_2 \le 8$, $x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

und die Punkte

$$x^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $x^2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ $x^3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $x^4 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$.

- a) Ermitteln Sie die Kegel der zulässigen Richtungen $Z(x^k)$ für alle $k \in \{1, 2, 3, 4\}$.
- b) Ermitteln Sie für x^4 die Menge der Abstiegsrichtungen.