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The Einstein–Podolsky–Rosen (EPR) experiment

Consider the Bell state

|ψ−〉 =
1√
2

(|z,+〉|z,−〉 − |z,−〉|z,+〉) =
1√
2

(|x,+〉|x,−〉 − |x,−〉|x,+〉)

Z if Alice measures σz, B is ‘collapsed’ to |z,+〉 or |z,−〉
Z if Alice measures σx, B is ‘collapsed’ to |x,+〉 or |x,−〉

|ψ−〉 =
1√
2

(|n̂,+〉|n̂,−〉 − |n̂,−〉|n̂,+〉)

Z if Alice measures n̂, B is ‘collapsed’ to |n̂,+〉 or |n̂,−〉

Alice can ‘steer’ Bob’s system into different ensembles from a distance!
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Different notions of quantum nonlocality

Z EPR, 1935: ‘spooky at a distance’!?
Z Schrödinger, 1935: ‘entangled’ systems express ‘steering’!

(Bell nonlocal)

Bell local

separable

unsteerable

Z Bell nonlocality: certain quantum correlation is stronger than
any classical correlation (Bell, 1964)
Z Nonseparability: certain quantum states cannot be prepared by
Local Operations and Classical Communication (Werner, 1989)
Z Steerability: certain EPR experiments cannot be locally
simulated (Wiseman et al., 2007)
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The verification protocol for the EPR experiment

Z Alice prepares multiple copies of a bipartite state over AiBi

Z Alice sends parts Bi to Bob

Z Bob asks Alice to perform a specific measurement on all Ai

Z Alice makes the measurement on Ai and announces the results

Z Bob does tomography to verify the expected conditional states
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‘Noisy’ EPR steering

The Werner state

Wp = p |ψ−〉 〈ψ−|+ (1− p) I
2
⊗ I

2

Z If Alice measures n̂, B is ‘collapsed’ to

p |n̂,+〉 〈n̂,+|+ (1− p) I
2

or p |n̂,−〉 〈n̂,−|+ (1− p) I
2
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Steering of Werner state: a cheating strategy

Z Alice sends Bob random states Bi on the Bloch sphere

Z Bob asks Alice to perform a specific measurement n̂ on all Ai

Z Alice announces the outcomes |n̂,±〉 for Bi by partitioning the
Bloch ‘sphere’

Z Bob classifies Bi into different outcomes and do tomography to
verify that Bi are in the expected states

We say W 1
2

is unsteerable with projective measurements!
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Unsteerable and steerable states

A state ρ is unsteerable from Alice’s side if:

Z there exists an ensemble of Local Hidden States (LHS) u(P ) on
the Bloch sphere

Z for any measurement E = {Ei}ni=1 on A, there exist response
functions 0 ≤ Gi(P ) ≤ 1,

∑n
i=1Gi(P ) = 1, such that

E′i =

∫
dS(P )u(P )Gi(P )P

where E′i = TrA[ρ(Ei ⊗ IB)].

Wiseman et al. PRL ’07
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The central question

Given a state ρ, is it steerable or unsteerable?

...unsolved even for the simplest case of the two-qubit Werner state!

We do understand well:

Z finite number of measurements

Z projective measurements

See: Open quantum problem 39 (IQOQI Vienna)
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What is the difficulty?

For two-qubit Werner state W 1
2
:
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...with POVMs

Fact: For two-qubit states, considering 4-POVM is enough!

D’Ariano et al 2006; Barrett 2002, Werner 2014, Quintino et al. 2015
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Outlines

1. Steerability as a nesting problem

2. The first nesting criterion: nesting by duality

Evidence for unsteerability of W 1
2

with 4-POVMs

3. The second nesting criterion: nesting by topology

Further evidence for unsteerability of W 1
2

with 4-POVMs
Proof of unsteerability of W 1

2
with 3-POVMs

Some remarks on the steerability of two-qubit states with 2-POVMs
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Steerability as a nesting problem

A state ρ is unsteerable from Alice’s side if:

Z there exists an ensemble of Local Hidden States (LHS) u(P ) on
the Bloch sphere

Z for any measurement E = {Ei}ni=1 on A, there exist response
functions 0 ≤ Gi(P ) ≤ 1,

∑n
i=1Gi(P ) = 1, such that

E′i =

∫
dS(P )u(P )Gi(P )P

where E′i = TrA[ρ(Ei ⊗ IB)].

A state ρ is unsteerable with n-POVMs by LHS ensemble u iff

(Mn)′ ⊆ Kn(u)

Z Mn: the set of POVMs of n outcomes
Z (Mn)′: the n- steering assemblage (all ensembles Alice can steer)
Z Kn(u): the n-capacity of u (all ensembles Alice can simulate)

CN, AM, TV & SJ, arXiv:1706.08166 11 / 29



The set of POVMs Mn

n-probability simplex Sn n-POVM ‘simplex’ Mn

p1 ⊕ p2 ⊕ · · · ⊕ pn E1 ⊕ E2 ⊕ · · · ⊕ En∑n
i=1 pi = 1, 0 ≤ pi ≤ 1

∑n
i=1Ei = I, 0 ≤ Ei ≤ I

1
0

1

1

I

0

I

I
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For qubits: the double cone of 0 ≤ X ≤ I

For qubit: with {σi}3i=0 = {I, σx, σy, σz}

X =
1

2

3∑
i=0

xiσi

Forward cone:

0 ≤ X : x20 ≤ x21 + x22 + x23, 0 ≤ x0

Backward cone:

X ≤ I : (2− x0)2 ≤ x21 + x22 + x23, x0 ≤ 2

Bloch sphere:

X ≤ I : x20 = x21 + x22 + x23, x0 = 1

-1
1

0

2

X
2

X
1

0

X
0

1

1
-1 0

Bloch sphere

I

O

X
3

X
1

X
2

-1
1

0

1
0

1

0
-1 -1

CN & TV, PRA 2016
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The steering assemblage (Mn)′ of the POVM ‘simplex’

Alice’s system → Bob’s system
E1 ⊕ E2 ⊕ E3 → E′1 ⊕ E′2 ⊕ E′3
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The capacity of a distribution Kn(u)

I'
0

I'

I'

The n-capacity Kn(u) consists of K1 ⊕K2 ⊕ · · · ⊕Kn with

Ki =

∫
dS(P )u(P )Gi(P )P

for all possible choices of 0 ≤ Gi(P ) ≤ 1,
∑n

i=1Gi(P ) = 1.

CN, AM, TV & SJ, arXiv:1706.08166
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Steerability as a nesting problem

A state ρ is unsteerable with n-POVMs by LHS ensemble u iff

(Mn)′ ⊆ Kn(u)

I'
0

I'

I'

Z Mn: the set of POVMs of n outcomes

Z (Mn)′: the n- steering assemblage (all ensembles Alice can steer)

Z Kn(u): the n-capacity of u (all ensembles Alice can simulate)

CN, AM, TV & SJ, arXiv:1706.08166
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The first criterion: nesting by duality

Let X and Y be two non-empty compact convex
sets, then Y ⊆ X iff

max
X∈X
〈Z,X〉 ≥ max

Y ∈Y
〈Z, Y 〉

for all directions Z.

Z

Z For X = Kn(u) and Y = (Mn)′, define the gap function

∆ = min
Z

{
max

K∈Kn(u)
〈Z,K〉 − max

E∈Mn

〈
Z,E′

〉}
Then (Mn)′ ⊆ Kn(u) if and only if ∆ ≥ 0.

CN, AM, TV & SJ, arXiv:1706.08166
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Application: steerability of Werner state with 4-POVMs

∆ = min
Z,E

{
1

4π

∫
dS(P ) max

i
〈Zi, P 〉 −

4∑
i=1

Tr[ρ(Zi ⊗ Ei)]

}
simulated annealing

0.490 0.495 0.500 0.505 0.510
p

−0.0050

−0.0025
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0.0025
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∆

with ePOVMs

with PVMs

with PVMs (analytic)
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limitation: only heuristic, the region 1
2 − 10−3 ≤ p cannot be resolved!

CN, AM, TV & SJ, arXiv:1706.08166
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Details of the simulated annealing algorithm

the simulated annealing progress

10−10 10−7 10−4 10−1

T

10−9

10−7

10−5

10−3

10−1

∆

result of 512 replicas

0.490 0.495 0.500 0.505 0.510
p

−0.0050

−0.0025

0.0000

0.0025

0.0050

∆

with ePOVMs

with PVMs

with PVMs (analytic)

CN, AM, TV & SJ, arXiv:1706.08166
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The second criterion: nesting by topology

Let X and Y be two non-empty compact convex
sets, if Y ⊆ aff X, intr Y ∩ X 6= Ø and ∂rX ∩
intr Y = Ø then Y ⊆ X.

Z For X = Kn(u) and Y = (Mn)′, then (Mn)′ ⊆ Kn(u) if and only if

∂rK
n(u) ∩ intr(M

n)′ = Ø

CN, AM, TV & SJ, in preparation
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Application: steerability of Werner state with 4-POVMs

The boundary of the capacity parametrised by Z = ⊕4
i=1Zi

K̄i(Z) =
1

4π

∫
dS(P )Θ(〈Zi, P 〉 −max

i
〈Zi, P 〉)P

The relative interior of the steering assemblage
A composite operator X = ⊕4

i=1Xi is outside the interior of the
steering assemblage of the Werner state if some Xi is outside the
interior of the steering image of the positive cone, or√

Tr(X2
i )− Tr2(Xi)

Tr(Xi)
≥ p

for some i.

CN, AM, TV & SJ, in preparation
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A geometric constant

ZFor 4 arbitrary operators Zi, one divides the
Bloch sphere into 4 parts Ci, each containing pro-
jections P such that 〈Zi, P 〉 ≥ 〈Zj , P 〉 for j 6= i.
ZDefine a geometric constant by:

c0 = min
Z

max
i


√

Tr(K̄2
i )− Tr2(K̄i)

Tr(K̄i)


where K̄i =

∫
Ci

dS(P )P .

Then the Werner state Wp is unsteerable if and only if p ≤ c0!

Conjecture: c0 = 1
2

CN, AM, TV & SJ, in preparation
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Computation of the geometric constant

simulated annealing

0.0000 0.0005 0.0010 0.0015 0.0020
1/M

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

ε
with ε = 1

2 − c0
and M : number of grid
points for spherical integra-
tion

CN, AM, TV & SJ, in preparation
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The case of 3-POVMs

3-POVMs are planar!

For a POVM E = ⊕3
i=1Ei, and Ei ∝

(
1
nnni

)
, then nnn1, nnn2, nnn3 are on the

same plane, say Oxy.

Planar capacity K3
z(u)

Response functions G(nnn) are independent of altitude, thus

Ki =
1

4π

∫
d s(aaa)gi(aaa)

 2
π
2aaa
0


where aaa is on the unit circle of Oxy.

Werner, JPA (2014); CN, AM, TV & SJ, in preparation
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The case of 3-POVMs

The boundary of K3
z(u) K̄i =

1

4π

∫
d s(aaa)Θ(zi0+zzz

i·aaa)

 2
π
2aaa
0



1

2

3
4

5

6

(a)

I(6-1)

II(2-3)III(4-5)

(b)

I(6-1)

II(2-3)III(4-5)

(c)

I(6-1)

II(2-3)III(4-5)

(d)
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The case of 2-POVMs

The set of 2-POVM reduces to

M = {X|0 ≤ X ≤ I}

The steering assemblage reduces to

M′ = TrA[ρ(M⊗ I)]

The 2-capacity reduces to

K(u) =

{∫
dS(P )u(P )g(P )P

∣∣∣∣0 ≤ g(P ) ≤ 1

}
For qubit and uniform distribution

∂K(u) : x21 + x22 + x23 = (1− x0)2x20

X
0

X
1

X
3

-1/4
1/4

0

1/4

0 1
1/2

1/4 0

CN & TV, PRA ’16

26 / 29



The case of 2-POVMs

Simplified nesting criterion

equator of the steering outcomes

principal cross-section

principal cross-section (transformed)

equator of steering outcomes (transformed)

Z Define r(u) to be the inscribed radius of the transformed principal
cross-section of K(u) then ρ is unsteerable iff r(u) ≥ 1.
See: Jevtic et al., JOSA B ’15; CN & TV, EPL ’16 27 / 29



Concluding remarks

Quantum steering is stated as a nesting problem of convex objects:

Z Two testing criterions were stated

Z The steerability of the two-qubit Werner state is tested

Future projects:

Z Steerability of other two-qubit states

Z Optimising the LHS ensemble

Z Higher dimensional systems: are PVMs and POVMs equivalent?
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