Workshop on Quantum Incompatibility

QUANTUM STEERING WITH POSITIVE OPERATOR VALUED MEASURES

Chau Nguyen¹, Antony Milne², Thanh Vu³, Sania Jevtic²

 $^1\mathrm{Max}\text{-}\mathrm{Planck}\text{-}\mathrm{Institut}$ für Physik komplexer Systeme, Dresden

²Imperial College, London

³Hanoi University of Science and Technology, Hanoi

Maria Laach, August 2017

The Einstein–Podolsky–Rosen (EPR) experiment

Consider the Bell state

$$|\psi_{-}\rangle = \frac{1}{\sqrt{2}}(|z,+\rangle|z,-\rangle - |z,-\rangle|z,+\rangle) = \frac{1}{\sqrt{2}}(|x,+\rangle|x,-\rangle - |x,-\rangle|x,+\rangle)$$

if Alice measures σ_z , B is 'collapsed' to $|z, +\rangle$ or $|z, -\rangle$

if Alice measures σ_x , B is 'collapsed' to $|x, +\rangle$ or $|x, -\rangle$

$$|\psi_{-}\rangle = \frac{1}{\sqrt{2}}(|\hat{n},+\rangle|\hat{n},-\rangle - |\hat{n},-\rangle|\hat{n},+\rangle)$$

if Alice measures \hat{n} , B is 'collapsed' to $|\hat{n}, +\rangle$ or $|\hat{n}, -\rangle$

Alice can 'steer' Bob's system into different ensembles from a distance!

Different notions of quantum nonlocality

- **EPR, 1935:** 'spooky at a distance'!?
- Schrödinger, 1935: 'entangled' systems express 'steering'!

■ Bell nonlocality: certain quantum correlation is stronger than any classical correlation (Bell, 1964)

 Nonseparability: certain quantum states cannot be prepared by Local Operations and Classical Communication (Werner, 1989)
 Steerability: certain EPR experiments cannot be locally simulated (Wiseman et al., 2007)

The verification protocol for the EPR experiment

Solution Alice prepares multiple copies of a bipartite state over $A_i B_i$

 \blacksquare Alice sends parts B_i to Bob

Solve a Bob asks Alice to perform a specific measurement on all A_i

 \bowtie Alice makes the measurement on A_i and announces the results

Bob does tomography to verify the expected conditional states

'Noisy' EPR steering

The Werner state

$$W_p = p \left| \psi_{-} \right\rangle \left\langle \psi_{-} \right| + (1-p) \frac{\mathbb{I}}{2} \otimes \frac{\mathbb{I}}{2}$$

If Alice measures \hat{n} , B is 'collapsed' to

$$p\left|\hat{n},+\right\rangle\left\langle\hat{n},+\right|+(1-p)\frac{\mathbb{I}}{2} \text{ or } p\left|\hat{n},-\right\rangle\left\langle\hat{n},-\right|+(1-p)\frac{\mathbb{I}}{2}$$

Steering of Werner state: a cheating strategy

- \blacksquare Alice sends Bob random states B_i on the Bloch sphere
- \blacksquare Bob asks Alice to perform a specific measurement \hat{n} on all A_i
- Alice announces the outcomes $|\hat{n}, \pm\rangle$ for B_i by partitioning the Bloch 'sphere'

Bob classifies B_i into different outcomes and do tomography to verify that B_i are in the expected states

We say $W_{\frac{1}{2}}$ is unsteerable with projective measurements!

Unsteerable and steerable states

A state ρ is unsteerable from Alice's side if:

- there exists an ensemble of Local Hidden States (LHS) u(P) on the Bloch sphere
- for any measurement $E = \{E_i\}_{i=1}^n$ on A, there exist response functions $0 \le G_i(P) \le 1, \sum_{i=1}^n G_i(P) = 1$, such that

$$E'_i = \int \mathrm{d}\, S(P)u(P)G_i(P)P$$

where $E'_i = \operatorname{Tr}_A[\rho(E_i \otimes \mathbb{I}_B)].$

Wiseman et al. PRL '07

The central question

Given a state ρ , is it steerable or unsteerable?

... unsolved even for the simplest case of the two-qubit Werner state!

We do understand well:

- \blacksquare finite number of measurements
- Image: Image

See: Open quantum problem 39 (IQOQI Vienna)

What is the difficulty?

For two-qubit Werner state $W_{\frac{1}{2}}$:

D'Ariano et al 2006; Barrett 2002, Werner 2014, Quintino et al. 2015

Outlines

- 1. Steerability as a nesting problem
- 2. The first nesting criterion: nesting by duality
 - Evidence for unsteerability of $W_{\frac{1}{2}}$ with 4-POVMs
- 3. The second nesting criterion: nesting by topology
 - Further evidence for unsteerability of $W_{\frac{1}{2}}$ with 4-POVMs
 - Proof of unsteerability of $W_{\frac{1}{2}}$ with 3-POVMs
 - Some remarks on the steerability of two-qubit states with 2-POVMs

Steerability as a nesting problem

- A state ρ is unsteerable from Alice's side if:
 - \blacksquare there exists an ensemble of Local Hidden States (LHS) u(P) on the Bloch sphere
 - for any measurement $E = \{E_i\}_{i=1}^n$ on A, there exist response functions $0 \le G_i(P) \le 1$, $\sum_{i=1}^n G_i(P) = 1$, such that $E'_i = \int \mathrm{d} S(P) u(P) G_i(P) P$

where $E'_i = \operatorname{Tr}_A[\rho(E_i \otimes \mathbb{I}_B)].$

A state ρ is unsteerable with *n*-POVMs by LHS ensemble **u** iff

 $(\mathcal{M}^n)' \subseteq \mathcal{K}^n(u)$

 $\bowtie \mathcal{M}^n$: the set of POVMs of *n* outcomes

 The set of POVMs \mathcal{M}^n

n-POVM 'simplex' \mathcal{M}^n

$$E_1 \oplus E_2 \oplus \dots \oplus E_n$$
$$\sum_{i=1}^n E_i = \mathbb{I}, 0 \le E_i \le \mathbb{I}$$

For qubits: the double cone of $0 \leq X \leq \mathbb{I}$

For qubit: with $\{\sigma_i\}_{i=0}^3 = \{\mathbb{I}, \sigma_x, \sigma_y, \sigma_z\}$

$$X = \frac{1}{2} \sum_{i=0}^{3} x_i \sigma_i$$

Forward cone:

$$0 \le X : x_0^2 \le x_1^2 + x_2^2 + x_3^2, 0 \le x_0$$

Backward cone:

$$X \le \mathbb{I} : (2 - x_0)^2 \le x_1^2 + x_2^2 + x_3^2, x_0 \le 2$$

Bloch sphere:

$$X \leq \mathbb{I}: x_0^2 = x_1^2 + x_2^2 + x_3^2, x_0 = 1$$

The steering assemblage $(\mathcal{M}^n)'$ of the POVM 'simplex'

The capacity of a distribution $\mathcal{K}^n(u)$

The *n*-capacity $\mathcal{K}^n(u)$ consists of $K_1 \oplus K_2 \oplus \cdots \oplus K_n$ with

$$K_i = \int \mathrm{d}\, S(P)u(P)G_i(P)P$$

for all possible choices of $0 \le G_i(P) \le 1, \sum_{i=1}^n G_i(P) = 1$.

CN, AM, TV & SJ, arXiv:1706.08166

Steerability as a nesting problem

\mathfrak{M}^n : the set of POVMs of *n* outcomes

Image (\mathcal{M}^n)': the *n*- steering assemblage (all ensembles Alice can steer)
Image $\mathcal{K}^n(u)$: the *n*-capacity of *u* (all ensembles Alice can simulate)

CN, AM, TV & SJ, arXiv:1706.08166

The first criterion: nesting by duality

Let X and Y be two non-empty compact convex sets, then $\mathcal{Y} \subseteq \mathcal{X}$ iff

$$\max_{X\in\mathfrak{X}}\left\langle Z,X\right\rangle\geq\max_{Y\in\mathfrak{Y}}\left\langle Z,Y\right\rangle$$

for all directions Z.

$$\Delta = \min_{Z} \left\{ \max_{K \in \mathcal{K}^{n}(u)} \left\langle Z, K \right\rangle - \max_{E \in \mathcal{M}^{n}} \left\langle Z, E' \right\rangle \right\}$$

Then $(\mathcal{M}^n)' \subseteq \mathcal{K}^n(u)$ if and only if $\Delta \ge 0$.

CN, AM, TV & SJ, arXiv:1706.08166

Application: steerability of Werner state with 4-POVMs

18/29

Details of the simulated annealing algorithm

CN, AM, TV & SJ, arXiv:1706.08166

The second criterion: nesting by topology

For $\mathfrak{X} = \mathfrak{K}^n(u)$ and $\mathfrak{Y} = (\mathfrak{M}^n)'$, then $(\mathfrak{M}^n)' \subseteq \mathfrak{K}^n(u)$ if and only if $\partial_r \mathfrak{K}^n(u) \cap \operatorname{int}_r(\mathfrak{M}^n)' = \emptyset$

Application: steerability of Werner state with 4-POVMs

The boundary of the capacity parametrised by $Z = \bigoplus_{i=1}^{4} Z_i$

$$\bar{K}_i(Z) = \frac{1}{4\pi} \int \mathrm{d}\, S(P) \Theta(\langle Z_i, P \rangle - \max_i \langle Z_i, P \rangle) P$$

The relative interior of the steering assemblage A composite operator $X = \bigoplus_{i=1}^{4} X_i$ is outside the interior of the steering assemblage of the Werner state if some X_i is outside the interior of the steering image of the positive cone, or

$$\frac{\sqrt{\operatorname{Tr}(X_i^2) - \operatorname{Tr}^2(X_i)}}{\operatorname{Tr}(X_i)} \ge p$$

for some i.

A geometric constant

For 4 arbitrary operators Z_i , one divides the Bloch sphere into 4 parts C_i , each containing projections P such that $\langle Z_i, P \rangle \ge \langle Z_j, P \rangle$ for $j \neq i$. Define a geometric constant by:

$$c_0 = \min_{Z} \max_{i} \left\{ \frac{\sqrt{\operatorname{Tr}(\bar{K}_i^2) - \operatorname{Tr}^2(\bar{K}_i)}}{\operatorname{Tr}(\bar{K}_i)} \right\}$$

where $\bar{K}_i = \int_{\mathscr{C}_i} \mathrm{d}\, S(P) P$.

Then the Werner state W_p is unsteerable if and only if $p \le c_0!$ Conjecture: $c_0 = \frac{1}{2}$

Computation of the geometric constant

The case of 3-POVMs

3-POVMs are planar!

For a POVM $E = \bigoplus_{i=1}^{3} E_i$, and $E_i \propto \begin{pmatrix} 1 \\ n_i \end{pmatrix}$, then n_1, n_2, n_3 are on the same plane, say Oxy.

Planar capacity $\mathcal{K}_z^3(u)$ Response functions $G(\mathbf{n})$ are independent of altitude, thus

$$K_{i} = \frac{1}{4\pi} \int \mathrm{d}\, s(\boldsymbol{a}) g_{i}(\boldsymbol{a}) \begin{pmatrix} 2\\ \frac{\pi}{2}\boldsymbol{a}\\ 0 \end{pmatrix}$$

where \boldsymbol{a} is on the unit circle of Oxy.

Werner, JPA (2014); CN, AM, TV & SJ, in preparation

The case of 3-POVMs

 $\bar{K}_i = \frac{1}{4\pi} \int \mathrm{d}\, s(\boldsymbol{a}) \Theta(z_0^i + \boldsymbol{z}^i \cdot \boldsymbol{a}) \begin{pmatrix} 2\\ \frac{\pi}{2} \boldsymbol{a}\\ 0 \end{pmatrix}$ The boundary of $\mathcal{K}^3_z(u)$ III(4-5) I(6-1) (a) (b) III(4-5) III(4-5) II(2-3) I(6-1) I(6-1) (c) (d)

The case of 2-POVMs

The set of 2-POVM reduces to

 $\mathcal{M} = \{ X | 0 \le X \le \mathbb{I} \}$

The steering assemblage reduces to

 $\mathcal{M}' = \mathrm{Tr}_A[\rho(\mathcal{M} \otimes \mathbb{I})]$

The 2-capacity reduces to

$$\mathcal{K}(u) = \left\{ \int \mathrm{d}\, S(P) u(P) g(P) P \middle| 0 \le g(P) \le 1 \right\}$$

For qubit and uniform distribution

$$\partial \mathcal{K}(u) : x_1^2 + x_2^2 + x_3^2 = (1 - x_0)^2 x_0^2$$

CN & TV, PRA '16

The case of 2-POVMs

Simplified nesting criterion

equator of the steering outcomes

■ Define r(u) to be the inscribed radius of the transformed principal cross-section of $\mathcal{K}(u)$ then ρ is unsteerable iff $r(u) \ge 1$. See: Jevtic et al., JOSA B '15; CN & TV, EPL '16

Concluding remarks

Quantum steering is stated as a nesting problem of convex objects:

- \blacksquare Two testing criterions were stated
- $\scriptstyle \blacksquare$ The steerability of the two-qubit Werner state is tested

Future projects:

- ☞ Steerability of other two-qubit states
- ☞ Optimising the LHS ensemble
- ☞ Higher dimensional systems: are PVMs and POVMs equivalent?

Acknowledgement

Scientific Discussions: Xuan Thanh Le, Michael J. W. Hall, Marco T. Quintino, Flavien Hirsch, Roope Uola, Kimmo Luoma, Walter Strunz, David Gross, Eric Lutz and people in the Non-linear Dynamics & Time Series Analysis group at MPI-PKS.

Financial Support: the Visitor Program at MPI-PKS for financially supporting and Holger Kantz for hosting at the TSA group.

Thank you for your attention!