Workshop on Quantum Incompatibility

Quantum steering with positive operator VALUED MEASURES

$\underline{\text { Chau Nguyen }}{ }^{1}$, Antony Milne ${ }^{2}$, Thanh Vu ${ }^{3}$, Sania Jevtic ${ }^{2}$
${ }^{1}$ Max-Planck-Institut für Physik komplexer Systeme, Dresden
${ }^{2}$ Imperial College, London
${ }^{3}$ Hanoi University of Science and Technology, Hanoi

Maria Laach, August 2017

The Einstein-Podolsky-Rosen (EPR) experiment

Consider the Bell state
$\left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|z,+\rangle|z,-\rangle-|z,-\rangle|z,+\rangle)=\frac{1}{\sqrt{2}}(|x,+\rangle|x,-\rangle-|x,-\rangle|x,+\rangle)$
if Alice measures σ_{z}, B is 'collapsed' to $|z,+\rangle$ or $|z,-\rangle$
if Alice measures σ_{x}, B is 'collapsed' to $|x,+\rangle$ or $|x,-\rangle$

$$
\left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|\hat{n},+\rangle|\hat{n},-\rangle-|\hat{n},-\rangle|\hat{n},+\rangle)
$$

if Alice measures \hat{n}, B is 'collapsed' to $|\hat{n},+\rangle$ or $|\hat{n},-\rangle$

Alice can 'steer' Bob's system into different ensembles from a distance!

Different notions of quantum nonlocality

EPR, 1935: 'spooky at a distance'??
Schrödinger, 1935: 'entangled' systems express 'steering'!

Bell nonlocality: certain quantum correlation is stronger than any classical correlation (Bell, 1964)
Nonseparability: certain quantum states cannot be prepared by Local Operations and Classical Communication (Werner, 1989) Steerability: certain EPR experiments cannot be locally simulated (Wiseman et al., 2007)

The verification protocol for the EPR experiment

Alice prepares multiple copies of a bipartite state over $A_{i} B_{i}$

Alice sends parts B_{i} to Bob

Bob asks Alice to perform a specific measurement on all A_{i}

Alice makes the measurement on A_{i} and announces the results

Bob does tomography to verify the expected conditional states

‘Noisy' EPR steering

The Werner state

$$
W_{p}=p\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|+(1-p) \frac{\mathbb{I}}{2} \otimes \frac{\mathbb{I}}{2}
$$

If Alice measures \hat{n}, B is 'collapsed' to

$$
p|\hat{n},+\rangle\langle\hat{n},+|+(1-p) \frac{\mathbb{I}}{2} \text { or } p|\hat{n},-\rangle\langle\hat{n},-|+(1-p) \frac{\mathbb{I}}{2}
$$

Steering of Werner state: a cheating strategy

Alice sends Bob random states B_{i} on the Bloch sphere
Bob asks Alice to perform a specific measurement \hat{n} on all A_{i}
Alice announces the outcomes $|\hat{n}, \pm\rangle$ for B_{i} by partitioning the Bloch 'sphere'

Bob classifies B_{i} into different outcomes and do tomography to verify that B_{i} are in the expected states

We say $W_{\frac{1}{2}}$ is unsteerable with projective measurements!

Unsteerable and steerable states

A state ρ is unsteerable from Alice's side if:
there exists an ensemble of Local Hidden States (LHS) $u(P)$ on the Bloch sphere
for any measurement $E=\left\{E_{i}\right\}_{i=1}^{n}$ on A, there exist response functions $0 \leq G_{i}(P) \leq 1, \sum_{i=1}^{n} G_{i}(P)=1$, such that

$$
E_{i}^{\prime}=\int \mathrm{d} S(P) u(P) G_{i}(P) P
$$

where $E_{i}^{\prime}=\operatorname{Tr}_{A}\left[\rho\left(E_{i} \otimes \mathbb{I}_{B}\right)\right]$.

The central question

Given a state ρ, is it steerable or unsteerable?

...unsolved even for the simplest case of the two-qubit Werner state!
We do understand well:
finite number of measurements
projective measurements

See: Open quantum problem 39 (IQOQI Vienna)

What is the difficulty?

For two-qubit Werner state $W_{\frac{1}{2}}$:

Fact: For two-qubit states, considering 4-POVM is enough!

Outlines

1. Steerability as a nesting problem
2. The first nesting criterion: nesting by duality

- Evidence for unsteerability of $W_{\frac{1}{2}}$ with 4 -POVMs

3. The second nesting criterion: nesting by topology

- Further evidence for unsteerability of $W_{\frac{1}{2}}$ with $4-\mathrm{POVMs}$
- Proof of unsteerability of $W_{\frac{1}{2}}$ with $3-\mathrm{PO}^{2} \mathrm{VMs}$
- Some remarks on the steerability of two-qubit states with 2-POVMs

Steerability as a nesting problem

A state ρ is unsteerable from Alice's side if:
there exists an ensemble of Local Hidden States (LHS) $u(P)$ on the Bloch sphere
for any measurement $E=\left\{E_{i}\right\}_{i=1}^{n}$ on A, there exist response functions $0 \leq G_{i}(P) \leq 1, \sum_{i=1}^{n} G_{i}(P)=1$, such that

$$
E_{i}^{\prime}=\int \mathrm{d} S(P) u(P) G_{i}(P) P
$$

where $E_{i}^{\prime}=\operatorname{Tr}_{A}\left[\rho\left(E_{i} \otimes \mathbb{I}_{B}\right)\right]$.
A state ρ is unsteerable with n-POVMs by LHS ensemble u iff

$$
\left(\mathcal{M}^{n}\right)^{\prime} \subseteq \mathcal{K}^{n}(u)
$$

(\mathcal{M}^{n} : the set of POVMs of n outcomes
$\left(\mathcal{N}^{n}\right)^{\prime}$: the n - steering assemblage (all ensembles Alice can steer)
$\mathcal{K}^{n}(u)$: the n-capacity of u (all ensembles Alice can simulate)

The set of POVMs \mathcal{M}^{n}

n-probability simplex S^{n}

$$
\begin{gathered}
p_{1} \oplus p_{2} \oplus \cdots \oplus p_{n} \\
\sum_{i=1}^{n} p_{i}=1,0 \leq p_{i} \leq 1
\end{gathered}
$$

n-POVM 'simplex' \mathcal{N}^{n}

$$
\begin{gathered}
E_{1} \oplus E_{2} \oplus \cdots \oplus E_{n} \\
\sum_{i=1}^{n} E_{i}=\mathbb{I}, 0 \leq E_{i} \leq \mathbb{I}
\end{gathered}
$$

For qubits: the double cone of $0 \leq X \leq \mathbb{I}$
For qubit: with $\left\{\sigma_{i}\right\}_{i=0}^{3}=\left\{\mathbb{I}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$

$$
X=\frac{1}{2} \sum_{i=0}^{3} x_{i} \sigma_{i}
$$

Forward cone:

$$
0 \leq X: x_{0}^{2} \leq x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, 0 \leq x_{0}
$$

Backward cone:

$$
X \leq \mathbb{I}:\left(2-x_{0}\right)^{2} \leq x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, x_{0} \leq 2
$$

Bloch sphere:

$$
X \leq \mathbb{I}: x_{0}^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, x_{0}=1
$$

CN \& TV, PRA 2016

The steering assemblage $\left(\mathcal{N}^{n}\right)^{\prime}$ of the POVM 'simplex'

$$
\begin{array}{lll}
\text { Alice's system } & \rightarrow & \text { Bob's system } \\
E_{1} \oplus E_{2} \oplus E_{3} & \rightarrow & E_{1}^{\prime} \oplus E_{2}^{\prime} \oplus E_{3}^{\prime}
\end{array}
$$

The capacity of a distribution $\mathcal{K}^{n}(u)$

The n-capacity $\mathcal{K}^{n}(u)$ consists of $K_{1} \oplus K_{2} \oplus \cdots \oplus K_{n}$ with

$$
K_{i}=\int \mathrm{d} S(P) u(P) G_{i}(P) P
$$

for all possible choices of $0 \leq G_{i}(P) \leq 1, \sum_{i=1}^{n} G_{i}(P)=1$.
CN, AM, TV \& SJ, arXiv:1706.08166

Steerability as a nesting problem

A state ρ is unsteerable with n-POVMs by LHS ensemble u iff

$$
\left(\mathcal{M}^{n}\right)^{\prime} \subseteq \mathcal{K}^{n}(u)
$$

\mathcal{N}^{n} : the set of POVMs of n outcomes
$\left(\mathcal{N}^{n}\right)^{\prime}$: the n - steering assemblage (all ensembles Alice can steer)
$\mathcal{K}^{n}(u)$: the n-capacity of u (all ensembles Alice can simulate)

CN, AM, TV \& SJ, arXiv:1706.08166

The first criterion: nesting by duality

Let X and y be two non-empty compact convex sets, then $y \subseteq X$ iff

$$
\max _{X \in X}\langle Z, X\rangle \geq \max _{Y \in \mathcal{Y}}\langle Z, Y\rangle
$$

for all directions Z.

For $\mathcal{X}=\mathcal{K}^{n}(u)$ and $y=\left(\mathcal{N}^{n}\right)^{\prime}$, define the gap function

$$
\Delta=\min _{Z}\left\{\max _{K \in \mathcal{K}^{n}(u)}\langle Z, K\rangle-\max _{E \in \mathcal{M}^{n}}\left\langle Z, E^{\prime}\right\rangle\right\}
$$

Then $\left(\mathcal{M}^{n}\right)^{\prime} \subseteq \mathcal{K}^{n}(u)$ if and only if $\Delta \geq 0$.

Application: steerability of Werner state with 4-POVMs

$$
\Delta=\min _{Z, E}\left\{\frac{1}{4 \pi} \int \mathrm{~d} S(P) \max _{i}\left\langle Z_{i}, P\right\rangle-\sum_{i=1}^{4} \operatorname{Tr}\left[\rho\left(Z_{i} \otimes E_{i}\right)\right]\right\}
$$

limitation: only heuristic, the region $\frac{1}{2}-10^{-3} \leq p$ cannot be resolved!

Details of the simulated annealing algorithm

CN, AM, TV \& SJ, arXiv:1706.08166

The second criterion: nesting by topology

Let X and y be two non-empty compact convex sets, if $y \subseteq$ aff \mathcal{X}, $\operatorname{int}_{r} y \cap \mathcal{X} \neq \varnothing$ and $\partial_{r} \mathcal{X} \cap$ $\operatorname{int}_{r} y=\emptyset$ then $y \subseteq \mathcal{X}$.

For $\mathcal{X}=\mathcal{K}^{n}(u)$ and $y=\left(\mathcal{M}^{n}\right)^{\prime}$, then $\left(\mathcal{M}^{n}\right)^{\prime} \subseteq \mathcal{K}^{n}(u)$ if and only if

$$
\partial_{r} \mathcal{K}^{n}(u) \cap \operatorname{int}_{r}\left(\mathcal{M}^{n}\right)^{\prime}=\varnothing
$$

CN, AM, TV \& SJ, in preparation

Application: steerability of Werner state with 4-POVMs

The boundary of the capacity parametrised by $Z=\oplus_{i=1}^{4} Z_{i}$

$$
\bar{K}_{i}(Z)=\frac{1}{4 \pi} \int \mathrm{~d} S(P) \Theta\left(\left\langle Z_{i}, P\right\rangle-\max _{i}\left\langle Z_{i}, P\right\rangle\right) P
$$

The relative interior of the steering assemblage
A composite operator $X=\oplus_{i=1}^{4} X_{i}$ is outside the interior of the steering assemblage of the Werner state if some X_{i} is outside the interior of the steering image of the positive cone, or

$$
\frac{\sqrt{\operatorname{Tr}\left(X_{i}^{2}\right)-\operatorname{Tr}^{2}\left(X_{i}\right)}}{\operatorname{Tr}\left(X_{i}\right)} \geq p
$$

for some i.

A geometric constant

For 4 arbitrary operators Z_{i}, one divides the Bloch sphere into 4 parts \mathscr{C}_{i}, each containing projections P such that $\left\langle Z_{i}, P\right\rangle \geq\left\langle Z_{j}, P\right\rangle$ for $j \neq i$.
Define a geometric constant by:

$$
c_{0}=\min _{Z} \max _{i}\left\{\frac{\sqrt{\operatorname{Tr}\left(\bar{K}_{i}^{2}\right)-\operatorname{Tr}^{2}\left(\bar{K}_{i}\right)}}{\operatorname{Tr}\left(\bar{K}_{i}\right)}\right\}
$$

where $\bar{K}_{i}=\int_{\mathscr{C}_{i}} \mathrm{~d} S(P) P$.

Then the Werner state W_{p} is unsteerable if and only if $p \leq c_{0}$!
Conjecture: $c_{0}=\frac{1}{2}$

Computation of the geometric constant

The case of 3-POVMs

3-POVMs are planar!

For a POVM $E=\oplus_{i=1}^{3} E_{i}$, and $E_{i} \propto\binom{1}{\boldsymbol{n}_{i}}$, then $\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}$ are on the same plane, say $O x y$.
Planar capacity $\mathcal{K}_{z}^{3}(u)$
Response functions $G(\boldsymbol{n})$ are independent of altitude, thus

$$
K_{i}=\frac{1}{4 \pi} \int \mathrm{~d} s(\boldsymbol{a}) g_{i}(\boldsymbol{a})\left(\begin{array}{c}
2 \\
\frac{\pi}{2} \boldsymbol{a} \\
0
\end{array}\right)
$$

where \boldsymbol{a} is on the unit circle of $O x y$.

The case of 3-POVMs

The boundary of $\mathscr{K}_{z}^{3}(u) \quad \bar{K}_{i}=\frac{1}{4 \pi} \int \mathrm{~d} s(\boldsymbol{a}) \Theta\left(z_{0}^{i}+\boldsymbol{z}^{i} \cdot \boldsymbol{a}\right)\left(\begin{array}{c}2 \\ \frac{\pi}{2} \boldsymbol{a} \\ 0\end{array}\right)$

(a)

(c)

(b)

(d)

The case of 2-POVMs

The set of 2-POVM reduces to

$$
\mathcal{M}=\{X \mid 0 \leq X \leq \mathbb{I}\}
$$

The steering assemblage reduces to

$$
\mathcal{M}^{\prime}=\operatorname{Tr}_{A}[\rho(\mathcal{M} \otimes \mathbb{I})]
$$

The 2-capacity reduces to
$\mathcal{K}(u)=\left\{\int \mathrm{d} S(P) u(P) g(P) P \mid 0 \leq g(P) \leq 1\right\}$
For qubit and uniform distribution

$$
\partial \mathcal{K}(u): x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left(1-x_{0}\right)^{2} x_{0}^{2}
$$

The case of 2-POVMs

Simplified nesting criterion

equator of the steering outcomes
Define $r(u)$ to be the inscribed radius of the transformed principal cross-section of $\mathcal{K}(u)$ then ρ is unsteerable iff $r(u) \geq 1$. See: Jevtic et al., JOSA B '15; CN \& TV, EPL '16

Concluding remarks

Quantum steering is stated as a nesting problem of convex objects:
Two testing criterions were stated
The steerability of the two-qubit Werner state is tested
Future projects:
Steerability of other two-qubit states
Optimising the LHS ensemble
Higher dimensional systems: are PVMs and POVMs equivalent?

Acknowledgement

Scientific Discussions: Xuan Thanh Le, Michael J. W. Hall, Marco T. Quintino, Flavien Hirsch, Roope Uola, Kimmo Luoma, Walter Strunz, David Gross, Eric Lutz and people in the Non-linear Dynamics \& Time Series Analysis group at MPI-PKS.

Financial Support: the Visitor Program at MPI-PKS for financially supporting and Holger Kantz for hosting at the TSA group.

Thank you for your attention!

