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Preparation uncertainties

A, B = two observables (POVMs) with outcomes ΩA and ΩB

For any state ρ,

Aρ(X ) = tr [ρA(X )] Bρ(Y ) = tr [ρB(Y )] X ⊂ ΩA, Y ⊂ ΩB

PUR = any constraint relating all the probabilities Aρ and Bρ evaluated
at the same state ρ (or, tipically, their spreads); no joint measurement
or approximate joint measurement of A and B is involved.
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Preparation uncertainties

Robertson-Schrödinger uncertainty relations for two selfadjoint
operators (1929-30)

Vρ(A)Vρ(B) ≥
∣∣∣∣12Eρ({A,B})− Eρ(A)Eρ(B)

∣∣∣∣2 +
1
4
|Eρ([A,B])|2

≥ 1
4
|Eρ([A,B])|2

where

Eρ(X ) = tr [ρX ] Vρ(X ) = Eρ(X 2)− Eρ(X )2

For position and momentum

Vρ(Q)Vρ(P) ≥ ~2

4
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Preparation uncertainties

Maassen-Uffnik entropic uncertainty relations for two sharp
observables (PVMs) in finite dimension (1988)

H(Aρ) + H(Bρ) ≥ −2 log max
x ,y
|〈ax |by 〉|

where

A(x) = |ax〉〈ax | B(y) = |by 〉〈by |

and H is the Shannon entropy

H(p) = −
∑

z

p(z) log p(z) (with 0 log 0 ≡ 0)
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Preparation uncertainties

Krishna-Parthasarathy entropic uncertainty relations for two generic
observables (POVMs) in finite dimension (2002)

H(Aρ) + H(Bρ) ≥ −2 log max
x ,y

∥∥∥A(x)1/2B(y)1/2
∥∥∥

For position and momentum (with ~ = 1)

H(Qρ) + H(Pρ) > 0 (Hirschman 1957)
H(Qρ) + H(Pρ) ≥ log(πe) (Beckner & Bialynicki-Birula,

Mycielski 1975)
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Measurement uncertainties

A, B = two target observables (POVMs) with outcomes ΩA and ΩB

M = a bi-observables, i.e., a POVM with outcomes ΩA × ΩB

M[1], M[2] = the two marginals of M

We regard M as an approximate joint measurement of A and B

MUR = a lower bound for the “errors” of any approximate joint
measurement M of A and B

MURs require to fix an error function describing how well Mρ
[1] and Mρ

[2]

approximate the target distributions Aρ and Bρ, for any state ρ.
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Measurement uncertainties

The relative entropy of a probability p w.r.t. a probability q (or
Kullback-Leibler divergence of q from p) is

S
(
p‖q

)
=


∑

x∈supp p

p(x) log
p(x)

q(x)
if supp p ⊆ supp q,

+∞ otherwise.

Properties:
S
(
p‖q

)
≥ 0, and S

(
p‖q

)
= 0 iff p = q;

S
(
· ‖ ·

)
is jointly convex and LSC;

S
(
p‖q

)
is independent of the labeling of the outcomes.
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Measurement uncertainties

The total error in approximating (A,B) with the bi-observable M is

S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
in the state ρ

Taking the worst possible case w.r.t. ρ, we get the entropic divergence
of M from (A,B):

D
(
A,B‖M

)
= sup

ρ

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
The entropic incompatibility degree of A and B is

cinc(A,B) = inf
M

D
(
A,B‖M

)
Entropic measurement uncertainty relations:

∀ bi-observable M ∃ρ s.t. S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
≥ cinc(A,B)
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Measurement uncertainties

Relation with preparation uncertainty:

cinc(A,B) + cprep(A,B) ≤ log |ΩA|+ log |ΩB|

where
cprep(A,B) = inf

ρ
[H(Aρ) + H(Bρ)]

N. B.: cprep(A,B) can be 6= 0 even if A and B are compatible!
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Main results

Theorem (Properties of cinc)
(i) cinc(A,B) = cinc(B,A)

(ii) For all observables A,B

0 ≤ cinc(A,B) ≤ log
2(d + 1)

d + 2 + d minx Aρ0(x)

+ log
2(d + 1)

d + 2 + d miny Bρ0(y)
≤ 2 log 2

where ρ0 = 1/d is the maximally mixed state
(iii) The set of optimal approximate joint measurements

Minc(A,B) = arg min
M

D
(
A,B‖M

)
is nonempty, convex and compact
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Main results

Theorem (Properties of cinc)
(iv) cinc(A,B) = 0 if and only if A and B are compatible, and in this

case Minc(A,B) is the set of all the joint measurements of A and B.
(v) If a group G acts

- on ΩA × ΩB (by means of a suitable action)
- on H (by means of a projective unitary representation)
and A and B are covariant, then there is always a G-covariant
element in Minc(A,B)
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Examples
For two orthogonal sharp spin-1/2 observables

X(x) =
1
2

(1 + xσ1) Y(y) =
1
2

(1 + yσ2) (x , y = ±1)

we have

cinc(X,Y) = log
2
√

2√
2 + 1

Minc(X,Y) = {M0} with M0(x , y) =
1
4

[
1 +

x√
2
σ1 +

y√
2
σ2

]

~i

~n
~j

The symmetry group is the dihedral group D4
generated by the 180◦ rotations along~i and ~n.
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Examples

For two nonorthogonal sharp spin-1/2 observables

A(x) =
1
2

(1 + x a · σ) B(y) =
1
2

(1 + y b · σ) a · b = cosα

an analytic lower bound can be given for cinc(A,B).

π
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π
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cinc(A,B)

analytic lower bound

numerical evaluations
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Examples

For two nonorthogonal sharp spin-1/2 observables

A(x) =
1
2

(1 + x a · σ) B(y) =
1
2

(1 + y b · σ) a · b = cosα

an analytic lower bound can be given for cinc(A,B).

Contrary to the orthogonal case, the (unique) covariant
M0 ∈Minc(A,B) does not have noisy versions of A and B as marginals.

~i

~n~m
~j

~a

~b

The symmetry group is the dihe-
dral group D2 generated by the
180◦ rotations along ~n and ~m.
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Examples
For two Fourier-related MUBs in prime-power dimension d = pn

Q(x) = |ex〉〈ex | P(y) = F−1Q(y)F (x , y ∈ Fd )

Fx ,y =
1√
d

exp
(
−2πi

p
Tr (xy)

)
we have

cinc(A,B) ≥ log
2
√

d√
d + 1

and, if p is odd,

Minc(Q,P) = {M0} with M0(x , y) =
1

2(d +
√

d)
|ψx ,y 〉〈ψx ,y |

where

ψx ,y = ex + exp
(
−2πi

p
Tr (xy)

)
Fe−y
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group of the finite phase-space F2

d



Error / disturbance

Definition (Heinosaari, Wolf (2010))
The observable A can be measured without disturbing B if there exists
an instrument J on ΩA such that (in the Heisenberg picture)

Jx (1) = A(x) ∀x ∈ ΩA

JΩA(B(y)) = B(y) ∀y ∈ ΩB

In this case, the bi-observable

[J (B)](x , y) := Jx (B(y))

is a joint measurement of A and B
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Error / disturbance

Sequential measurements of approximate versions of A followed by B:

M(ΩA; B) = {J (B) | J is an instrument on ΩA}

If J (B) ∈M(ΩA; B), then in general

J (B)[1] = J·(1) 6= A (J approximates A)

J (B)[2] = JΩA(B(·)) 6= B (J disturbs B)

Alessandro Toigo (PoliMi, INFN) Entropic uncertainty relations Andernach, 29th August 2017 18 / 28



Entropic error / disturbance coefficient

We can define the entropic error/disturbance coefficient

ced(A; B) = inf
M∈M(ΩA;B)

D
(
A,B‖M

)
= inf

M∈M(ΩA;B)
sup
ρ

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
Note that ced is NOT symmetric

Entropic error/disturbance uncertainty relations:

∀ instrument J ∃ρ s. t. S
(
Aρ‖J (B)ρ[1]

)
+ S

(
Bρ‖J (B)ρ[2]

)
≥ ced(A; B)
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Main results

Theorem (Properties of ced)
(i) cinc(A,B) ≤ ced(A; B)

(ii) cinc(A,B) = ced(A; B) if B is sharp
(iii) The same bounds of cinc hold for ced

(iv) The set of optimal approximate measurements of A resulting in
the minimal disturbance on B

Med(A; B) = arg min
M∈M(ΩA;B)

D
(
A,B‖M

)
is nonempty, convex and compact

(v) ced(A; B) = 0 if and only if A can be measured without disturbing
B, and in this case Med(A; B) is the set of all the sequential
measurements of A followed by B which do not disturb B
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Generalization to n > 2 observables

The incompatibility index cinc can be easily generalized to the case of n
observables A1, . . . ,An:

cinc(A1, . . . ,An) = inf
M

sup
ρ

n∑
i=1

S
(
Aρi ‖M

ρ
[i]

)
Minc(A1, . . . ,An) = arg min

M
sup
ρ

n∑
i=1

S
(
Aρi ‖M

ρ
[i]

)
For example, for three orthogonal sharp spin-1/2 observables,

cinc(X,Y,Z) = log
2
√

3√
3 + 1
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The Q-P case

For the position Q and momentum P on R, and any bi-observable M on
R2, we can still define the entropic divergence

D
(
Q,P‖M

)
= sup

ρ

{
S
(
Qρ‖Mρ

[1]

)
+ S

(
Pρ‖Mρ

[2]

)}
where the relative entropy of a probability measure µ w.r.t. a probability
measure ν is

S
(
µ‖ν

)
=


∫ (

log
dµ(x)

dν(x)

)
dµ(x) if µ has density w.r.t. ν

+∞ otherwise

However, the Radon-Nikodym derivatives
dQρ(x)

dMρ
[1](x)

and
dPρ(y)

dMρ
[2](y)

may

be difficult to evaluate.
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The Q-P case

For this reason, we restrict to a very particular case:
Gaussian states;
Gaussian and covariant approximating bi-observables.

Covariance is understood w.r.t. the phase-space translation group:

M(Z + (x , y)) = W (x , y)M(Z )W (x , y)∗ ∀Z ∈ B(R2), (x , y) ∈ R2

where the W (x , y)’s are the Weyl operators

W (x , y) = exp
[

i
~

(yQ − xP)

]
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The Q-P case

With these assumptions,

Qρ = N(Eρ(Q),Vρ(Q)) Pρ = N(Eρ(P),Vρ(P))

Mρ
[1] = Qρ ∗ N(EM(Q),VM(Q)) Mρ

[2] = Pρ ∗ N(EM(P),VM(P))

where EM(Q),EM(P) ∈ R, VM(Q) > 0, VM(P) > 0, and

VM(Q)VM(P) ≥ ~2

4
However,

DG
(
Q,P‖M

)
:= sup

ρ Gaussian

{
S
(
Qρ‖Mρ

[1]

)
+ S

(
Pρ‖Mρ

[2]

)}
= +∞

because e.g. S
(
Qρ‖Mρ

[1]

)
→ +∞ when

Vρ(Q)

VM(Q)
→ 0
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This is a classical effect!



The Q-P case

In order to avoid classical effects, we fix a threshold ε > 0

sup
ρ Gaussian
Vρ(Q)≥ε

S
(
Qρ‖Mρ

[1]

)
=

log e
2

[
ln
(

1 +
VM(Q)

ε

)
+

EM(Q)2 − VM(Q)

VM(Q) + ε

]
inf

M Gaussian
and covariant

sup
ρ Gaussian
Vρ(Q)≥ε

S
(
Qρ‖Mρ

[1]

)
= 0

If there were not quantum effects, for any ε1, ε2 > 0,

cinc(Q,P; ε) := inf
M Gaussian

and covariant

sup
ρ Gaussian
Vρ(Q)≥ε1
Vρ(P)≥ε2

{
S
(
Qρ‖Mρ

[1]

)
+ S

(
Pρ‖Mρ

[2]

)}
= 0
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The Q-P case

But since there are quantum effects,

cinc(Q,P; ε)

{
= (log e)

{
ln
(

1 + ~
2
√
ε1ε2

)
− ~

~+2
√
ε1ε2

}
if ε1ε2 ≥ ~2

4

≥ (log e)
(
ln 2− 1

2

)
if ε1ε2 < ~2

4

Moreover, when ε1ε2 ≥
~2

4
, the optimal Gaussian and covariant

bi-observable is unique.

For every Gaussian and covariant bi-observable M, the total
information loss S

(
Qρ‖Mρ

[1]

)
+ S

(
Pρ‖Mρ

[2]

)
can exceed the lower bound

cinc(Q,P; ε) even if we forbid states with too peaked target distributions.
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The Q-P case

Further generalizations:
vector valued position and momentum ~Q, ~P:
cinc(Q,P; ε) linearly scales with the dimension n

position and momentum along different directions ~a · ~Q, ~b · ~P:
cinc(Q,P; ε)→ 0 with continuity as ~a · ~b → 0.
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