Entropic uncertainty relations - The measurement case

Alessandro Toigo

Politecnico di Milano, INFN sezione di Milano
Andernach, 29th August 2017

In collaboration with:

Alberto Barchielli
 Politecnico di Milano (Italy)
 Matteo Gregoratti
 Politecnico di Milano (Italy)

Preparation uncertainties

A, $\mathrm{B}=$ two observables (POVMs) with outcomes Ω_{A} and Ω_{B} For any state ρ,

$$
\mathrm{A}^{\rho}(X)=\operatorname{tr}[\rho \mathrm{A}(X)] \quad \mathrm{B}^{\rho}(Y)=\operatorname{tr}[\rho \mathrm{B}(Y)] \quad X \subset \Omega_{\mathrm{A}}, Y \subset \Omega_{\mathrm{B}}
$$

PUR = any constraint relating all the probabilities A^{ρ} and B^{ρ} evaluated at the same state ρ (or, tipically, their spreads); no joint measurement or approximate joint measurement of A and B is involved.

Preparation uncertainties

Robertson-Schrödinger uncertainty relations for two selfadjoint operators (1929-30)

$$
\begin{aligned}
\mathbb{V}_{\rho}(A) \mathbb{V}_{\rho}(B) & \geq\left|\frac{1}{2} \mathbb{E}_{\rho}(\{A, B\})-\mathbb{E}_{\rho}(A) \mathbb{E}_{\rho}(B)\right|^{2}+\frac{1}{4}\left|\mathbb{E}_{\rho}([A, B])\right|^{2} \\
& \geq \frac{1}{4}\left|\mathbb{E}_{\rho}([A, B])\right|^{2}
\end{aligned}
$$

where

$$
\mathbb{E}_{\rho}(X)=\operatorname{tr}[\rho X] \quad \mathbb{V}_{\rho}(X)=\mathbb{E}_{\rho}\left(X^{2}\right)-\mathbb{E}_{\rho}(X)^{2}
$$

For position and momentum

$$
\mathbb{V}_{\rho}(Q) \mathbb{V}_{\rho}(P) \geq \frac{\hbar^{2}}{4}
$$

Preparation uncertainties

Maassen-Uffnik entropic uncertainty relations for two sharp observables (PVMs) in finite dimension (1988)

$$
H\left(\mathrm{~A}^{\rho}\right)+H\left(\mathrm{~B}^{\rho}\right) \geq-2 \log \max _{x, y}\left|\left\langle a_{x} \mid b_{y}\right\rangle\right|
$$

where

$$
\mathrm{A}(x)=\left|a_{x}\right\rangle\left\langle a_{x}\right| \quad \mathrm{B}(y)=\left|b_{y}\right\rangle\left\langle b_{y}\right|
$$

and H is the Shannon entropy

$$
H(p)=-\sum_{z} p(z) \log p(z) \quad(\text { with } 0 \log 0 \equiv 0)
$$

Preparation uncertainties

Krishna-Parthasarathy entropic uncertainty relations for two generic observables (POVMs) in finite dimension (2002)

$$
H\left(\mathrm{~A}^{\rho}\right)+H\left(\mathrm{~B}^{\rho}\right) \geq-2 \log \max _{x, y}\left\|\mathrm{~A}(x)^{1 / 2} \mathrm{~B}(y)^{1 / 2}\right\|
$$

For position and momentum (with $\hbar=1$)

$$
\begin{aligned}
& H\left(\mathrm{Q}^{\rho}\right)+H\left(\mathrm{P}^{\rho}\right)>0 \\
& H\left(\mathrm{Q}^{\rho}\right)+H\left(\mathrm{P}^{\rho}\right) \geq \log (\pi e)
\end{aligned}
$$

(Hirschman 1957)
(Beckner \& Bialynicki-Birula, Mycielski 1975)

Measurement uncertainties

$\mathrm{A}, \mathrm{B}=$ two target observables (POVMs) with outcomes Ω_{A} and Ω_{B}
$\mathrm{M}=$ a bi-observables, i.e., a POVM with outcomes $\Omega_{\mathrm{A}} \times \Omega_{\mathrm{B}}$
$\mathrm{M}_{[1]}, \mathrm{M}_{[2]}=$ the two marginals of M
We regard M as an approximate joint measurement of A and B
MUR = a lower bound for the "errors" of any approximate joint measurement M of A and B

MURs require to fix an error function describing how well $\mathrm{M}_{[1]}^{\rho}$ and $\mathrm{M}_{[2]}^{\rho}$ approximate the target distributions A^{ρ} and B^{ρ}, for any state ρ.

Measurement uncertainties

The relative entropy of a probability p w.r.t. a probability q (or Kullback-Leibler divergence of q from p) is

$$
S(p \| q)= \begin{cases}\sum_{x \in \operatorname{supp} p} p(x) \log \frac{p(x)}{q(x)} & \text { if supp } p \subseteq \operatorname{supp} q \\ +\infty & \text { otherwise }\end{cases}
$$

Properties:

- $S(p \| q) \geq 0$, and $S(p \| q)=0$ iff $p=q$;
- $S(\cdot \| \cdot)$ is jointly convex and LSC;
- $S(p \| q)$ is independent of the labeling of the outcomes.

Measurement uncertainties

The total error in approximating (A, B) with the bi-observable M is

$$
S\left(\mathrm{~A}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{~B}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right) \quad \text { in the state } \rho
$$

Taking the worst possible case w.r.t. ρ, we get the entropic divergence of M from (A, B):

$$
D(\mathrm{~A}, \mathrm{~B} \| \mathrm{M})=\sup _{\rho}\left\{S\left(\mathrm{~A}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{~B}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)\right\}
$$

The entropic incompatibility degree of A and B is

$$
c_{\mathrm{inc}}(\mathrm{~A}, \mathrm{~B})=\inf _{\mathrm{M}} D(\mathrm{~A}, \mathrm{~B} \| \mathrm{M})
$$

Entropic measurement uncertainty relations:
\forall bi-observable $\mathrm{M} \exists \rho$ s.t. $S\left(\mathrm{~A}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{~B}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right) \geq c_{\text {inc }}(\mathrm{A}, \mathrm{B})$

Measurement uncertainties

Relation with preparation uncertainty:

$$
c_{\text {inc }}(\mathrm{A}, \mathrm{~B})+c_{\text {prep }}(\mathrm{A}, \mathrm{~B}) \leq \log \left|\Omega_{\mathrm{A}}\right|+\log \left|\Omega_{\mathrm{B}}\right|
$$

where

$$
c_{\text {prep }}(\mathrm{A}, \mathrm{~B})=\inf _{\rho}\left[H\left(\mathrm{~A}^{\rho}\right)+H\left(\mathrm{~B}^{\rho}\right)\right]
$$

N. $B .: c_{\text {prep }}(A, B)$ can be $\neq 0$ even if A and B are compatible!

Main results

Theorem (Properties of $c_{\text {inc }}$)

(i) $c_{\text {inc }}(\mathrm{A}, \mathrm{B})=c_{\text {inc }}(\mathrm{B}, \mathrm{A})$
(ii) For all observables A, B

$$
\begin{aligned}
& 0 \leq c_{\text {inc }}(\mathrm{A}, \mathrm{~B}) \leq \log \frac{2(d+1)}{d+}+2+d \min _{x} \mathrm{~A}^{\rho_{0}(x)} \\
&+\log \frac{2(d+1)}{d+2+d \min _{y} \mathrm{~B}^{\rho_{0}}(y)} \leq 2 \log 2
\end{aligned}
$$

where $\rho_{0}=\mathbb{1} / d$ is the maximally mixed state
(iii) The set of optimal approximate joint measurements

$$
\mathcal{M}_{\mathrm{inc}}(\mathrm{~A}, \mathrm{~B})=\underset{\mathrm{M}}{\arg \min } D(\mathrm{~A}, \mathrm{~B} \| \mathrm{M})
$$

is nonempty, convex and compact

Main results

Theorem (Properties of $c_{\text {inc }}$)

(iv) $c_{\text {inc }}(\mathrm{A}, \mathrm{B})=0$ if and only if A and B are compatible, and in this case $\mathcal{M}_{\mathrm{inc}}(\mathrm{A}, \mathrm{B})$ is the set of all the joint measurements of A and B .
(v) If a group G acts

- on $\Omega_{\mathrm{A}} \times \Omega_{\mathrm{B}}$ (by means of a suitable action)
- on \mathcal{H} (by means of a projective unitary representation) and A and B are covariant, then there is always a G-covariant element in $\mathcal{M}_{\text {inc }}(\mathrm{A}, \mathrm{B})$

Examples

For two orthogonal sharp spin-1/2 observables

$$
X(x)=\frac{1}{2}\left(\mathbb{1}+x \sigma_{1}\right) \quad Y(y)=\frac{1}{2}\left(\mathbb{1}+y \sigma_{2}\right) \quad(x, y= \pm 1)
$$

we have

$$
\begin{aligned}
c_{\mathrm{inc}}(\mathrm{X}, \mathrm{Y}) & =\log \frac{2 \sqrt{2}}{\sqrt{2}+1} \\
\mathcal{M}_{\mathrm{inc}}(\mathrm{X}, \mathrm{Y}) & =\left\{\mathrm{M}_{0}\right\} \quad \text { with } \quad \mathrm{M}_{0}(x, y)=\frac{1}{4}\left[\mathbb{1}+\frac{x}{\sqrt{2}} \sigma_{1}+\frac{y}{\sqrt{2}} \sigma_{2}\right]
\end{aligned}
$$

The symmetry group is the dihedral group D_{4} generated by the 180° rotations along \vec{i} and \vec{n}.

Examples

For two nonorthogonal sharp spin- $1 / 2$ observables

$$
\mathrm{A}(x)=\frac{1}{2}(\mathbb{1}+x \mathbf{a} \cdot \boldsymbol{\sigma}) \quad \mathrm{B}(y)=\frac{1}{2}(\mathbb{1}+y \mathbf{b} \cdot \boldsymbol{\sigma}) \quad \mathbf{a} \cdot \mathbf{b}=\cos \alpha
$$

an analytic lower bound can be given for $c_{\text {inc }}(\mathrm{A}, \mathrm{B})$.

Examples

For two nonorthogonal sharp spin-1/2 observables

$$
\mathrm{A}(x)=\frac{1}{2}(\mathbb{1}+x \mathbf{a} \cdot \boldsymbol{\sigma}) \quad \mathrm{B}(y)=\frac{1}{2}(\mathbb{1}+y \mathbf{b} \cdot \boldsymbol{\sigma}) \quad \mathbf{a} \cdot \mathbf{b}=\cos \alpha
$$

an analytic lower bound can be given for $c_{\text {inc }}(A, B)$.
Contrary to the orthogonal case, the (unique) covariant $\mathrm{M}_{0} \in \mathcal{M}_{\text {inc }}(\mathrm{A}, \mathrm{B})$ does not have noisy versions of A and B as marginals.

The symmetry group is the dihedral group D_{2} generated by the 180° rotations along \vec{n} and \vec{m}.

Examples

For two Fourier-related MUBs in prime-power dimension $d=p^{n}$

$$
\begin{gathered}
\mathrm{Q}(x)=\left|e_{x}\right\rangle\left\langle e_{x}\right| \quad \mathrm{P}(y)=F^{-1} \mathrm{Q}(y) F \quad\left(x, y \in \mathbb{F}_{d}\right) \\
F_{x, y}=\frac{1}{\sqrt{d}} \exp \left(-\frac{2 \pi i}{p} \operatorname{Tr}(x y)\right)
\end{gathered}
$$

we have

$$
c_{\text {inc }}(A, B) \geq \log \frac{2 \sqrt{d}}{\sqrt{d}+1}
$$

and, if p is odd,

$$
\mathcal{M}_{\mathrm{inc}}(\mathrm{Q}, \mathrm{P})=\left\{\mathrm{M}_{0}\right\} \quad \text { with } \quad \mathrm{M}_{0}(x, y)=\frac{1}{2(d+\sqrt{d})}\left|\psi_{x, y}\right\rangle\left\langle\psi_{x, y}\right|
$$

where

$$
\psi_{x, y}=e_{x}+\exp \left(-\frac{2 \pi i}{p} \operatorname{Tr}(x y)\right) F e_{-y}
$$

The symmetry group is the translation group of the finite phase-space \mathbb{F}_{d}^{2}

Error / disturbance

Definition (Heinosaari, Wolf (2010))

The observable A can be measured without disturbing B if there exists an instrument \mathcal{J} on Ω_{A} such that (in the Heisenberg picture)

$$
\begin{array}{rlrl}
\mathcal{J}_{x}(\mathbb{1}) & =\mathrm{A}(x) & & \forall x \in \Omega_{\mathrm{A}} \\
\mathcal{J}_{\Omega_{\mathrm{A}}}(\mathrm{~B}(y))=\mathrm{B}(y) & & \forall y \in \Omega_{\mathrm{B}}
\end{array}
$$

In this case, the bi-observable

$$
[\mathcal{J}(B)](x, y):=\mathcal{J}_{x}(\mathrm{~B}(y))
$$

is a joint measurement of A and B

Error / disturbance

Sequential measurements of approximate versions of A followed by B :

$$
\mathcal{M}\left(\Omega_{A} ; B\right)=\left\{\mathcal{J}(B) \mid \mathcal{J} \text { is an instrument on } \Omega_{A}\right\}
$$

If $\mathcal{J}(B) \in \mathcal{M}\left(\Omega_{A} ; B\right)$, then in general

$$
\begin{aligned}
\mathcal{J}(B)_{[1]} & =\mathcal{J} \cdot(\mathbb{1}) \neq \mathrm{A} & & (\mathcal{J} \text { approximates } \mathrm{A}) \\
\mathcal{J}(B)_{[2]} & =\mathcal{J}_{\Omega_{\mathrm{A}}}(\mathrm{~B}(\cdot)) \neq \mathrm{B} & & (\mathcal{J} \text { disturbs } \mathrm{B})
\end{aligned}
$$

Entropic error / disturbance coefficient

We can define the entropic error/disturbance coefficient

$$
\begin{aligned}
c_{\mathrm{ed}}(\mathrm{~A} ; \mathrm{B}) & =\inf _{\mathrm{M} \in \mathcal{M}\left(\Omega_{\mathrm{A}} ; \mathrm{B}\right)} D(\mathrm{~A}, \mathrm{~B} \| \mathrm{M}) \\
& =\inf _{\mathrm{M} \in \mathcal{M}\left(\Omega_{\mathrm{A}} ; \mathrm{B}\right)} \sup _{\rho}\left\{S\left(\mathrm{~A}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{~B}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)\right\}
\end{aligned}
$$

Note that $c_{\text {ed }}$ is NOT symmetric
Entropic error/disturbance uncertainty relations:
\forall instrument $\mathcal{J} \exists \rho$ s. t. $S\left(\mathrm{~A}^{\rho} \| \mathcal{J}(\mathrm{B})_{[1]}^{\rho}\right)+S\left(\mathrm{~B}^{\rho} \| \mathcal{J}(\mathrm{B})_{[2]}^{\rho}\right) \geq c_{\mathrm{ed}}(\mathrm{A} ; \mathrm{B})$

Main results

Theorem (Properties of $C_{e d}$)

(i) $c_{\text {inc }}(\mathrm{A}, \mathrm{B}) \leq c_{\text {ed }}(\mathrm{A} ; \mathrm{B})$
(ii) $c_{\text {inc }}(A, B)=c_{\text {ed }}(A ; B)$ if B is sharp
(iii) The same bounds of $c_{\text {inc }}$ hold for $c_{\text {ed }}$
(iv) The set of optimal approximate measurements of A resulting in the minimal disturbance on B

$$
\mathcal{M}_{\mathrm{ed}}(\mathrm{~A} ; \mathrm{B})=\underset{M \in \mathcal{M}\left(\Omega_{\mathrm{A}} ; \mathrm{B}\right)}{\arg \min } D(\mathrm{~A}, \mathrm{~B} \| \mathrm{M})
$$

is nonempty, convex and compact
(v) $C_{e d}(A ; B)=0$ if and only if A can be measured without disturbing B, and in this case $\mathcal{M}_{\mathrm{ed}}(\mathrm{A} ; \mathrm{B})$ is the set of all the sequential measurements of A followed by B which do not disturb B

Generalization to $n>2$ observables

The incompatibility index $c_{\text {inc }}$ can be easily generalized to the case of n observables $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$:

$$
\begin{aligned}
c_{\mathrm{inc}}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right) & =\inf _{\mathrm{M}} \sup _{\rho} \sum_{i=1}^{n} S\left(\mathrm{~A}_{i}^{\rho} \| \mathrm{M}_{[i]}^{\rho}\right) \\
\mathcal{M}_{\mathrm{inc}}\left(\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{n}\right) & =\underset{\mathrm{M}}{\arg \min \sup _{\rho}} \sum_{i=1}^{n} S\left(\mathrm{~A}_{i}^{\rho} \| \mathrm{M}_{[i]}^{\rho}\right)
\end{aligned}
$$

For example, for three orthogonal sharp spin-1/2 observables,

$$
c_{\text {inc }}(X, Y, Z)=\log \frac{2 \sqrt{3}}{\sqrt{3}+1}
$$

The $Q-P$ case

For the position Q and momentum P on \mathbb{R}, and any bi-observable M on \mathbb{R}^{2}, we can still define the entropic divergence

$$
D(\mathrm{Q}, \mathrm{P} \| \mathrm{M})=\sup _{\rho}\left\{S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{P}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)\right\}
$$

where the relative entropy of a probability measure μ w.r.t. a probability measure ν is

$$
S(\mu \| \nu)= \begin{cases}\int\left(\log \frac{\mathrm{d} \mu(x)}{\mathrm{d} \nu(x)}\right) \mathrm{d} \mu(x) & \text { if } \mu \text { has density w.r.t. } \nu \\ +\infty & \text { otherwise }\end{cases}
$$

However, the Radon-Nikodym derivatives $\frac{\mathrm{dQ}^{\rho}(x)}{\mathrm{dM}_{[1]}^{\rho}(x)}$ and $\frac{\mathrm{dP}^{\rho}(y)}{\mathrm{dM}_{[2]}^{\rho}(y)}$ may be difficult to evaluate.

The $Q-P$ case

For this reason, we restrict to a very particular case:

- Gaussian states;
- Gaussian and covariant approximating bi-observables.

Covariance is understood w.r.t. the phase-space translation group:

$$
\mathrm{M}(Z+(x, y))=W(x, y) \mathrm{M}(Z) W(x, y)^{*} \quad \forall Z \in \mathcal{B}\left(\mathbb{R}^{2}\right),(x, y) \in \mathbb{R}^{2}
$$

where the $W(x, y)$'s are the Weyl operators

$$
W(x, y)=\exp \left[\frac{\mathrm{i}}{\hbar}(y Q-x P)\right]
$$

The $Q-P$ case

With these assumptions,

$$
\begin{aligned}
\mathrm{Q}^{\rho} & =N\left(\mathbb{E}_{\rho}(Q), \mathbb{V}_{\rho}(Q)\right) & \mathrm{P}^{\rho} & =N\left(\mathbb{E}_{\rho}(P), \mathbb{V}_{\rho}(P)\right) \\
\mathrm{M}_{[1]}^{\rho} & =\mathrm{Q}^{\rho} * N\left(\mathbb{E}_{\mathrm{M}}(Q), \mathbb{V}_{\mathrm{M}}(Q)\right) & \mathrm{M}_{[2]}^{\rho} & =\mathrm{P}^{\rho} * N\left(\mathbb{E}_{\mathrm{M}}(P), \mathbb{V}_{\mathrm{M}}(P)\right)
\end{aligned}
$$

where $\mathbb{E}_{\mathrm{M}}(Q), \mathbb{E}_{\mathrm{M}}(P) \in \mathbb{R}, \mathbb{V}_{\mathrm{M}}(Q)>0, \mathbb{V}_{\mathrm{M}}(P)>0$, and

$$
\mathbb{V}_{M}(Q) \mathbb{V}_{M}(P) \geq \frac{\hbar^{2}}{4}
$$

However,

$$
D^{G}(\mathrm{Q}, \mathrm{P} \| \mathrm{M}):=\sup _{\rho \text { Gaussian }}\left\{S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{P}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)\right\}=+\infty
$$

because e.g. $\quad S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right) \rightarrow+\infty \quad$ when $\quad \frac{\mathbb{V}_{\rho}(Q)}{\mathbb{V}_{\mathrm{M}}(Q)} \rightarrow 0$
This is a classical effect!

The $Q-P$ case

In order to avoid classical effects, we fix a threshold $\epsilon>0$

$$
\begin{gathered}
\sup _{\substack{\rho \text { Gaussian } \\
\mathbb{V}_{\rho}(Q) \geq \epsilon}} S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)=\frac{\log \mathrm{e}}{2}\left[\ln \left(1+\frac{\mathbb{V}_{\mathrm{M}}(Q)}{\epsilon}\right)+\frac{\mathbb{E}_{\mathrm{M}}(Q)^{2}-\mathbb{V}_{\mathrm{M}}(Q)}{\mathbb{V}_{\mathrm{M}}(Q)+\epsilon}\right] \\
\inf _{\substack{\mathrm{M} \text { Gaussian } \\
\text { and covariant }}} \sup _{\rho \text { Gaussian }} S\left(\mathbb{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)=0
\end{gathered}
$$

If there were not quantum effects, for any $\epsilon_{1}, \epsilon_{2}>0$,

$$
c_{\text {inc }}(\mathrm{Q}, \mathrm{P} ; \boldsymbol{\epsilon}):=\inf _{\substack{\text { MGaussian } \\ \text { and covariant }}} \sup _{\substack{\mathbb{V}_{\rho}(Q) \geq \operatorname{Gussian}^{(0)} \\ \mathbb{V} \rho(P) \geq \epsilon_{2}}}\left\{S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{P}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)\right\}=0
$$

The $Q-P$ case

But since there are quantum effects,

$$
c_{\text {inc }}(Q, P ; \boldsymbol{\epsilon}) \begin{cases}=(\log \mathrm{e})\left\{\ln \left(1+\frac{\hbar}{2 \sqrt{\epsilon_{1} \epsilon_{2}}}\right)-\frac{\hbar}{\hbar+2 \sqrt{\epsilon_{1} \epsilon_{2}}}\right\} & \text { if } \epsilon_{1} \epsilon_{2} \geq \frac{\hbar^{2}}{4} \\ \geq(\log \mathrm{e})\left(\ln 2-\frac{1}{2}\right) & \text { if } \epsilon_{1} \epsilon_{2}<\frac{\hbar^{2}}{4}\end{cases}
$$

Moreover, when $\epsilon_{1} \epsilon_{2} \geq \frac{\hbar^{2}}{4}$, the optimal Gaussian and covariant bi-observable is unique.

For every Gaussian and covariant bi-observable M , the total information loss $S\left(\mathrm{Q}^{\rho} \| \mathrm{M}_{[1]}^{\rho}\right)+S\left(\mathrm{P}^{\rho} \| \mathrm{M}_{[2]}^{\rho}\right)$ can exceed the lower bound $c_{\text {inc }}(Q, P ; \epsilon)$ even if we forbid states with too peaked target distributions.

The $Q-P$ case

Further generalizations:

- vector valued position and momentum \vec{Q}, \vec{P} : $c_{\text {inc }}(\mathrm{Q}, \mathrm{P} ; \epsilon)$ linearly scales with the dimension n
- position and momentum along different directions $\vec{a} \cdot \vec{Q}, \vec{b} \cdot \vec{P}$: $c_{\text {inc }}(Q, P ; \epsilon) \rightarrow 0$ with continuity as $\vec{a} \cdot \vec{b} \rightarrow 0$.

References

- A. Barchielli, M. Gregoratti and A. Toigo, Measurement uncertainty relations for discrete observables: Relative entropy formulation, coming (hopefully) soon (2017)
- A. Barchielli, M. Gregoratti and A. Toigo, Measurement uncertainty relations for position and momentum: Relative entropy formulation, Entropy 19, 301 (2017)

