Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

Huangjun Zhu
(Joint work with Quan Quan, Heng Fan, and Wen-Li Yang)

Institute for Theoretical Physics, University of Cologne

PRA 95, 062111 (2017)

Introduction

- Steering is a nonclassical phenomenon that formalizes what Einstein called "spooky action at a distance". For a long time, it was studied under the name of Einstein-Podolsky-Rosen (EPR) paradox.
- It is a form of nonlocality that sits between entanglement and Bell nonlocality and that is intrinsically asymmetric.
- It can be characterized by a simple quantum information processing task, namely, entanglement verification with an untrusted party.
- It is useful in a number of applications, such as subchannel discrimination and one-sided device-independent quantum key distribution.

Figure: Steering scenario. Alice can affect Bob's state via her choice of the measurement according to the relation $\rho_{a \mid x}=\operatorname{tr}_{A}\left[\left(A_{a \mid X} \otimes 1\right) \rho\right]$. Entanglement is necessary but not sufficient for steering.

LHV model vs. LHV-LHS model

- Local hidden variable (LHV) model

$$
p(a, b \mid x, y)=\sum_{\lambda} p_{\lambda} p(a \mid x, \lambda) p(b \mid y, \lambda) .
$$

$p(a \mid x, \lambda), p(b \mid y, \lambda)$: arbitrary probability distributions,

- Local hidden variable-local hidden state (LHV-LHS) model ${ }^{1}$,

$$
p(a, b \mid x, y)=\sum_{\lambda} p_{\lambda} p(a \mid x, \lambda) p\left(b \mid y, \rho_{\lambda}\right) .
$$

$p(a \mid x, \lambda)$: arbitrary probability distributions, $p\left(b \mid y, \rho_{\lambda}\right)=\operatorname{tr}\left(\rho_{\lambda} B_{b}\right)$: probability distributions from Born rule.

The set of probability distributions $p(a, b \mid x, y)$ is EPR nonlocal (Bell) if it does not admit any LHV-LHS (LHV) model.
${ }^{1}$ Werner, PRA, 40, 4277 (1989); Wiseman et al., PRL 98, 140402 (2007).

Simplest Bell scenario and Simplest Steering scenario

Simplest Bell scenario: Two dichotomic measurements for Alice and Bob, respectively.

The set of correlations is Bell nonlocal iff it violates the CHSH inequality.

Simplest steering scenario:
Two dichotomic measurements for Alice and Bob, respectively.
2. Two dichotomic measurements for Alice and one trine measurement for Bob.

Simplest Bell scenario and Simplest Steering scenario

Simplest Bell scenario: Two dichotomic measurements for Alice and Bob, respectively.

The set of correlations is Bell nonlocal iff it violates the CHSH inequality.

Simplest steering scenario:

1. Two dichotomic measurements for Alice and Bob, respectively.
2. Two dichotomic measurements for Alice and one trine measurement for Bob.

Which two-qubit states can generate EPR-nonlocal correlations in the simplest scenario?

What are the connections with the simplest Bell scenario?

Which two-qubit states can generate EPR-nonlocal correlations in the simplest scenario?

What are the connections with the simplest Bell scenario?

Measurement and state assemblages

- A positive-operator-valued measure (POVMs) is composed of a set of positive operators that sum up to the identity.
- A measurement assemblage $\left\{A_{a \mid x}\right\}$ is a collection of POVMs.
- Ensembles and state assemblages:

$$
\begin{equation*}
\rho_{\mathrm{a} \mid X}=\operatorname{tr}\left[\left(A_{\mathrm{a} \mid X} \otimes 1\right) \rho\right], \quad \sum_{a} \rho_{\mathrm{a} \mid X}=\rho_{B}=\operatorname{tr}_{A}(\rho) \tag{1}
\end{equation*}
$$

The set of unnormalized states $\rho_{a \mid x}$ for a given measurement x is an ensemble for ρ_{B}, and the whole collection $\left\{\rho_{a \mid x}\right\}$ a state assemblage

Steering and local hidden state model

- The assemblage $\left\{\rho_{a \mid x}\right\}$ admits a local hidden state model if

$$
\begin{equation*}
\rho_{a \mid x}=\sum_{\lambda} p(a \mid x, \lambda) \sigma_{\lambda} \quad \forall a, x \tag{2}
\end{equation*}
$$

where $\left\{\sigma_{\lambda}\right\}$ is an ensemble for ρ_{B} and $p(a \mid x, \lambda)$ are a collection of stochastic maps.

- The assemblage $\left\{\rho_{a \mid x}\right\}$ is steerable it does not admit a local hidden state model.
- The state ρ is steerable from Alice to Bob if there exists a measurement assemblage for Alice such that the resulting state assemblage for Bob is steerable.

Restricted LHS model

- Let $\mathcal{V} \leq \mathcal{B}(\mathcal{H})$ be a subspace of the operator space. The assemblage $\left\{\rho_{a \mid x}\right\}_{a, x}$ admits a \mathcal{V}-restricted LHS model if

$$
\operatorname{tr}\left(\Pi \rho_{a \mid x}\right)=\sum_{\lambda} p_{\lambda} p(a \mid x, \lambda) \operatorname{tr}\left(\Pi \rho_{\lambda}\right) \quad \forall \Pi \in \mathcal{V}
$$

Otherwise, it is \mathcal{V}-steerable.

- Let \mathcal{R} be the space spanned by all the effects B_{b}.
$\{p(a, b \mid x, y)\}$ is EPR nonlocal $\Longleftrightarrow\left\{\rho_{a \mid x}\right\}_{a, x}$ is \mathcal{R}-steerable.
- Consider the two-qubit state

$$
\rho=\frac{1}{4}\left(\boldsymbol{I} \otimes \boldsymbol{I}+\boldsymbol{\alpha} \cdot \boldsymbol{\sigma} \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \boldsymbol{\beta} \cdot \boldsymbol{\sigma}+\sum_{i, j=1}^{3} t_{i j} \sigma_{i} \otimes \sigma_{j}\right),
$$

Alice and Bob can choose two projective measurements as described by $\left\{\boldsymbol{A}_{1}, A_{2}\right\}=\left\{\boldsymbol{a}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{a}_{2} \cdot \boldsymbol{\sigma}\right\}$ and $\left\{B_{1}, B_{2}\right\}=\left\{\boldsymbol{b}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{b}_{2} \cdot \boldsymbol{\sigma}\right\}$.

- Assemble of Bob induced by Alice,
where $\gamma_{m j}=\sum_{i=1}^{3} a_{m i} t_{j}$.
- Assemblage after projection:
where $\tilde{\boldsymbol{\beta}}$ and $\tilde{\gamma}_{m}$ are the projection of and β and γ_{m} on the plane
spanned by $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$.
- Consider the two-qubit state

$$
\rho=\frac{1}{4}\left(\boldsymbol{I} \otimes \boldsymbol{I}+\boldsymbol{\alpha} \cdot \boldsymbol{\sigma} \otimes \boldsymbol{I}+\boldsymbol{I} \otimes \boldsymbol{\beta} \cdot \boldsymbol{\sigma}+\sum_{i, j=1}^{3} t_{i j} \sigma_{i} \otimes \sigma_{j}\right),
$$

Alice and Bob can choose two projective measurements as described by $\left\{\boldsymbol{A}_{1}, A_{2}\right\}=\left\{\boldsymbol{a}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{a}_{2} \cdot \boldsymbol{\sigma}\right\}$ and $\left\{B_{1}, B_{2}\right\}=\left\{\boldsymbol{b}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{b}_{2} \cdot \boldsymbol{\sigma}\right\}$.

- Assemble of Bob induced by Alice,

$$
\rho_{ \pm \mid m}=\frac{1}{4}\left[\left(1 \pm \boldsymbol{\alpha} \cdot \boldsymbol{a}_{m}\right) I+\boldsymbol{\beta} \cdot \boldsymbol{\sigma} \pm \boldsymbol{\gamma}_{m} \cdot \boldsymbol{\sigma}\right]
$$

where $\gamma_{m j}=\sum_{i=1}^{3} a_{m i} t_{i j}$.

- Assemblage after projection:

$$
\tilde{\rho}_{ \pm \mid m}=\frac{1}{4}\left[\left(1 \pm \boldsymbol{\alpha} \cdot \boldsymbol{a}_{m}\right) I+\tilde{\boldsymbol{\beta}} \cdot \boldsymbol{\sigma} \pm \tilde{\boldsymbol{\gamma}}_{m} \cdot \boldsymbol{\sigma}\right],
$$

where $\tilde{\boldsymbol{\beta}}$ and $\tilde{\boldsymbol{\gamma}}_{m}$ are the projection of and $\boldsymbol{\beta}$ and γ_{m} on the plane spanned by $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$.

Necessary and sufficient steering criterion

- The state ρ is steerable under the measurement setting $\left\{\boldsymbol{a}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{a}_{2} \cdot \boldsymbol{\sigma}\right\}$ and $\left\{\boldsymbol{b}_{1} \cdot \boldsymbol{\sigma}, \boldsymbol{b}_{2} \cdot \boldsymbol{\sigma}\right\}$ iff the assemblage $\left\{\tilde{\rho}_{ \pm \mid m}\right\}$ is steerable.
- Equivalently, the two effects $O_{+\mid 1}$ and $O_{+\mid 2}$ are not coexistent, where

$$
O_{ \pm \mid m}=\tilde{\rho}_{\mathrm{B}}^{-1 / 2} \tilde{\rho}_{ \pm \mid m} \tilde{\rho}_{\mathrm{B}}^{-1 / 2}=O_{ \pm \mid m}=\frac{1}{2}\left[\left(1 \pm \eta_{m}\right) I \pm \boldsymbol{r}_{m} \cdot \boldsymbol{\sigma}\right]
$$

are known as steering-equivalent observables.

- $O_{+\mid 1}$ and $O_{+\mid 2}$ are coexistent iff ${ }^{2}$

$$
\left(1-F_{1}^{2}-F_{2}^{2}\right)\left(1-\frac{\eta_{1}^{2}}{F_{1}^{2}}-\frac{\eta_{2}^{2}}{F_{2}^{2}}\right) \leq\left(\boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2}-\eta_{1} \eta_{2}\right)^{2}
$$

where

$$
F_{m}=\frac{1}{2}\left(\sqrt{\left(1+\eta_{m}\right)^{2}-r_{m}^{2}}+\sqrt{\left(1-\eta_{m}\right)^{2}-r_{m}^{2}}\right)
$$

${ }^{2}$ S. Yu, N.-I. Liu, L. Li, and C. H. Oh, PRA 81, 062116 (2010)

Theorem

In the simplest steering scenario, the set of full correlations is EPR nonlocal iff the analog CHSH inequality

$$
\begin{aligned}
& \left|\left\langle\left(A_{1}+A_{2}\right) B_{1}\right\rangle \boldsymbol{b}_{1}^{\prime}+\left\langle\left(A_{1}+A_{2}\right) B_{2}\right\rangle \boldsymbol{b}_{2}^{\prime}\right| \\
& +\left|\left\langle\left(A_{1}-A_{2}\right) B_{1}\right\rangle \boldsymbol{b}_{1}^{\prime}+\left\langle\left(A_{1}-A_{2}\right) B_{2}\right\rangle \boldsymbol{b}_{2}^{\prime}\right| \leq 2
\end{aligned}
$$

is violated, where $\boldsymbol{b}_{1}^{\prime}, \boldsymbol{b}_{2}^{\prime}$ form the dual basis of $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}$.
When Bob's measurements are mutually unbiased, the criterion reduces to that derived by Cavalcanti et al.

$$
\begin{aligned}
& \sqrt{\left\langle\left(A_{1}+A_{2}\right) B_{1}\right\rangle^{2}+\left\langle\left(A_{1}+A_{2}\right) B_{2}\right\rangle^{2}} \\
& +\sqrt{\left\langle\left(A_{1}-A_{2}\right) B_{1}\right\rangle^{2}+\left\langle\left(A_{1}-A_{2}\right) B_{2}\right\rangle^{2}} \leq 2,
\end{aligned}
$$

Theorem

The maximal violation S of the analog CHSH inequality by any two-qubit state with correlation matrix T is equal to the maximal violation of the CHSH inequality, namely, $S=2 \sqrt{\lambda_{1}+\lambda_{2}}$, where λ_{1}, λ_{2} are the two largest eigenvalues of $T T^{\mathrm{T}}$. Both inequalities are violated iff $\lambda_{1}+\lambda_{2}>1$.

Corollary

A two-qubit state can generate Bell-nonlocal correlations in the simplest nontrivial scenario iff it can generate EPR-nonlocal full correlations.

Strict hierarchy between steering and Bell nonlocality

 Consider a convex combination of the singlet and a product state,$$
\rho=s\left(\left|\Psi_{-}\right\rangle\left\langle\Psi_{-}\right|\right)+(1-s)(|0\rangle\langle 0|) \otimes \frac{1}{2} .
$$

Figure: Black region: states that can generate Bell-nonlocal correlations or EPR-nonlocal full correlations in the simplest scenario. Blue region: states that are steerable in the same scenario, but cannot generate Bell-nonlocal correlations or EPR-nonlocal full correlations.

Simplest and strongest one-way steering

Consider the two-qubit state ${ }^{3}$,

$$
\rho(p, \theta)=p(|\psi(\theta)\rangle\langle\psi(\theta)|)+(1-p)\left[\frac{l}{2} \otimes \rho_{\mathrm{B}}(\theta)\right],
$$

where $|\psi(\theta)\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle$.

- Violate the analog CHSH inequality iff $p^{2}\left[1+\sin ^{2}(2 \theta)\right]>1$.
- Not unsteerable from Bob to Alice by arbitrary projective measurements if

$$
\cos ^{2}(2 \theta) \geq \frac{2 p-1}{(2-p) p^{3}} .
$$

- Alice can steer Bob in the simplest scenario iff $p>1 / \sqrt{2}$.

[^0]
Simplest and strongest one-way steering

Figure: Orange: violate the (analog) CHSH inequality. Red: steerable from Alice to Bob in the simplest steering scenario, but cannot violate the (analog) CHSH inequality. Yellow: not steerable from Bob to Alice by arbitrary projective measurements. Intersection of the red region and the yellow region: demonstrate the simplest and strongest one-way steering.

Simplest one-way steering with respect to POVMs

Consider the state

$$
\begin{aligned}
\rho= & \frac{1}{4}\left[I \otimes I+p \cos (2 \theta) \sigma_{3} \otimes I+\cos ^{2} \theta I \otimes \sigma_{3}\right. \\
& \left.+p \cos \theta\left(\sin \theta \sigma_{1} \otimes \sigma_{1}-\sin \theta \sigma_{2} \otimes \sigma_{2}+\cos \theta \sigma_{3} \otimes \sigma_{3}\right)\right]
\end{aligned}
$$

- No violation of the (analog) CHSH inequality
- Not unsteerable from Bob to Alice by arbitrary POVMs if

$$
\cos ^{2}(2 \theta) \geq \frac{2 p-1}{(2-p) p^{3}}
$$

- Alice can steer Bob in the simplest scenario for some parameter range, say $p=0.825$ and $\theta=0.020$.

Summary and an open question

- A two-qubit state can generate EPR-nonlocal full correlations in the simplest nontrivial scenario iff it can generate Bell-nonlocal correlations ${ }^{4}$.
- When full statistics is taken into account, the same scenario can demonstrate one-way steering and the hierarchy between steering and Bell nonlocality in the simplest and strongest form.

Does there exist a two-qubit state that is not steerable in the simplest scenario, but is steerable in the second simplest scenario in which Alice performs two dichotomic measurements and Bob performs full tomography?

Summary and an open question

- A two-qubit state can generate EPR-nonlocal full correlations in the simplest nontrivial scenario iff it can generate Bell-nonlocal correlations ${ }^{4}$.
- When full statistics is taken into account, the same scenario can demonstrate one-way steering and the hierarchy between steering and Bell nonlocality in the simplest and strongest form.

Does there exist a two-qubit state that is not steerable in the simplest scenario, but is steerable in the second simplest scenario in which Alice performs two dichotomic measurements and Bob performs full tomography?

Thank You！

[^0]: ${ }^{3}$ J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner, PRA 93, 022121 (2016) $=$

