Genuine highdimensional steering

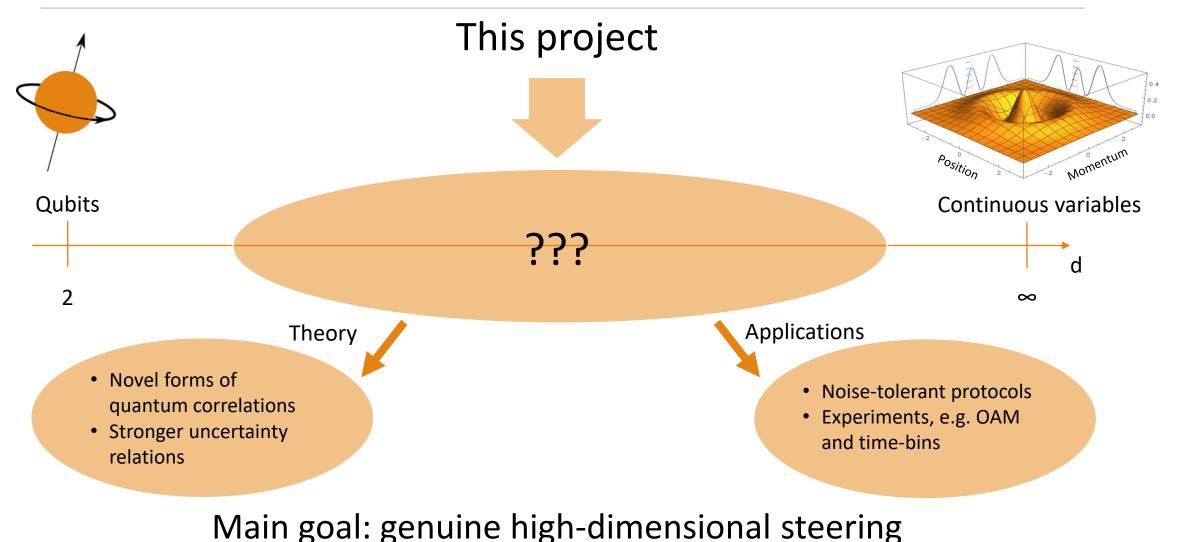
S. DESIGNOLLE, V. SRIVASTAV, <u>R. UOLA</u>, N.H. VALENCIA, W. MCCUTCHEON, M. MALIK, N. BRUNNER

PHYS. REV. LETT. 126, 200404 (2021)

Outline

- 1. High-dimensional systems
- 2. Quantum steering
- 3. High-dimensional quantum steering
- 4. Criterion and experimental violation

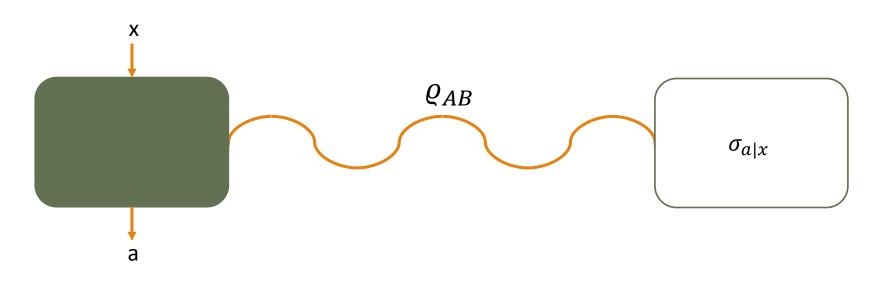
High-dimensional quantum systems



Quantum steering

- 1. Entanglement verification method
- 2. Quantum correlation between entanglement and Bell non-locality Wiseman et al. PRL 98 (2007)
- 3. Applications: QKD, randomness generation, subchannel discrimination and measurement incompatibility see e.g. Cavalcanti and Skrzypczyk Rep. Prog. Phys. 80 (2017), Uola et al. Rev. Mod. Phys. 92 (2020)

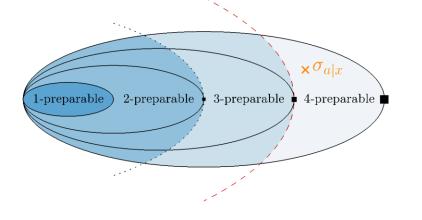
Quantum steering



- 1. Unsteerable: $\sigma_{a|x} = tr_A[(A_{a|x} \otimes I)\varrho_{AB}] = p(a|x)\sum_{\lambda} p(\lambda|a, x)\sigma_{\lambda}$
- 2. Separable ρ_{AB} leads to unsteerable $\sigma_{a|x}$
- 3. Unsteerable $\sigma_{a|x}$ preparable with some separable state Kogias et al. PRL 115 (2015), Moroder et al. PRL 116 (2016)
- 4. High-dimensionality?

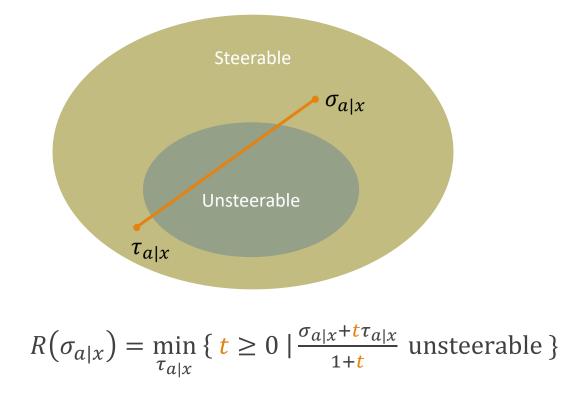
High-dimensional quantum steering

- 1. Unsteerable $\sigma_{a|x}$ preparable with some separable state
- 2. State separable iff Schmidt number is one
- 3. Reminder: Schmidt number $SN(\varrho_{AB}) = \min_{\substack{\varrho_{AB=\sum_{\lambda} p(\lambda)|\psi_{\lambda}\rangle\langle\psi_{\lambda}|}} \max SR(|\psi_{\lambda}\rangle)$
- 4. Genuine n-dimensional steering: $\sigma_{a|x}$ not preparable with a Schmidt number n-1 state



5. How to witness?

Steering robustness Piani and Watrous, PRL 114 (2015)



Upper bound (non-technical):

- 1. Robustness is convex
- 2. Schmidt number n
 - -> The convex components have a local dimension bounded by n
- 3. Dimension-dependent upper bounds on robustness

Upper bounding the robustness (technical)

1. Take $\sigma_{a|x}$ n-preparable:

$$\sigma_{a|x} = tr[(A_{a|x} \otimes I)\varrho_{AB}]$$

where Schmidt number of ϱ_{AB} is n

2. Write
$$\rho_{AB} = \sum_{\lambda} p(\lambda) |\psi_{\lambda}\rangle \langle \psi_{\lambda}|$$
 and $\sigma_{a|x} = \sum_{\lambda} p(\lambda) \tau_{a|x}^{\lambda}$

3. Convexity: $R(\sigma_{a|x}) \leq \sum_{\lambda} p(\lambda) R(\tau_{a|x}^{\lambda})$

4. Define
$$\varrho_{\lambda} = \sum_{a} \tau_{a|x}^{\lambda}$$
 and $B_{a|x}^{\lambda} = \varrho_{\lambda}^{-1/2} \tau_{a|x}^{\lambda} \varrho_{\lambda}^{-1/2}$

5. Straight-forward:
$$R(\tau_{a|x}^{\lambda}) \leq IR(B_{a|x}^{\lambda})$$

- 6. Here $IR(B_{a|x}) = \min_{C_{a|x}} \{ t \ge 0 \mid \frac{B_{a|x} + tC_{a|x}}{1+t} \text{ jointly measurable} \}$
- 7. Bounds on IR from Designolle et al. New J. Phys. 21 (2019)

Explicit upper bound

Given that an assemblage $\sigma_{a|x}$ (with two inputs) is preparable with a Schmidt number n state, then

$$R(\sigma_{a|x}) \le \frac{\sqrt{n} - 1}{\sqrt{n} + 1}$$

In other words

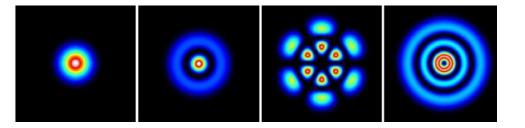
$$\delta(\sigma_{a|x}) \coloneqq \left(\frac{1 + R(\sigma_{a|x})}{1 - R(\sigma_{a|x})}\right)^2 \le n$$

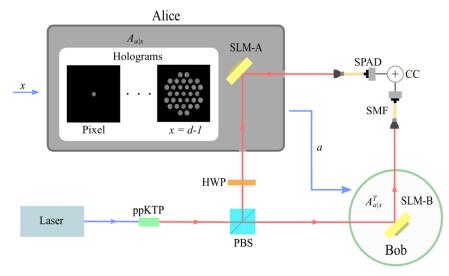
How to measure the robustness?

Steering robustness is an SDP -> Lagrange dual gives a witness

MUBs on Alice and a noisy singlet state -> witness given by MUBs on Bob

In the lab: use OAM of photons





Experimental results

Dimension	Lower bound on $\delta(\sigma_{a x})$		Max. certified
d	Minimum	Maximum	dimension n
5	4.1 ± 0.1	4.7 ± 0.1	5
7	5.1 ± 0.2	6.4 ± 0.1	7
11	6.3 ± 0.3	9.1 ± 0.2	10
13	7.0 ± 0.3	10.1 ± 0.3	11
17	9.3 ± 0.3	12.4 ± 0.3	13
19	10.1 ± 0.5	13.6 ± 0.5	14
23	11.4 ± 0.5		12
29	12.1 ± 0.6		13
31	14.1 ± 0.6		15

Conclusions

- 1. Defined the concept of high-dimensional steering
- 2. Criterion based on most incompatible pairs of measurements
- 3. Experimental verification up to Schmidt number 15 (in dimension 31)
- 4. Future directions:
 - i. dimensionality of POVMs
 - ii. capacity of channels (in terms of dimension)
 - iii. most incompatible sets of measurements