

Crystal Plasticity Modeling of Ni-Based Superalloys – Numerical Analysis and Experimental Validation

• Motivation

For their high creep resistance at high temperatures Ni-based superalloys are used for single-crystalline blades in gas (air-craft/stationary) turbines. The composition of Ni-based superalloy is two-phase, one with semicoherent, ordered Ni₃Al precipitates of L1₂ type (γ' -phase) embedded in a Ni-matrix of fcc structure (γ -phase). Size of a single precipitate: $d_p \approx 0.4-0.5 \,\mu$ m.

Indentation with indenters of spherical as well as pyramidal shape are used to investigate the material's plastic behavior. The key questions in the present, combined experimental and simulation analyses are:

- 1. Which continuum constitutive model is adequate for the two-phase material at room-temperature?
- 2. How does the indenter's geometrically non-isotropic, pyramidal shape influence the elastoplastic deformations of the single crystal? How does the indenter's azimuthal orientation influence the results? Will it break the symmetries of the crystal leading to pile-up pattern different from spherical indentation?
- 3. Which role plays the anisotropy in the elasticity law for the formation of anisotropic pile-up pattern?

• Aspects of modelling CMSX-4 at room temperature

- 1. Since the two phases each exhibit single-crystalline, fcc composition, an fcc crystal plasticity model is chosen assuming purely octahedral slip.
- 2. Since the length scale of the material is much smaller than the characteristic length scale of the experiment, the two-phase composition can be neglected and modelled as a "homogenized" material.

• Crystal plasticity constitutive model

Multiplicative decomposition			NT
Plastic velocity gradient	\mathbf{L}^{p}	=	
Schmidt Matrix	\mathbb{S}^{α}_0	=	$\mathbf{s}_{0}^{lpha}\otimes\mathbf{n}_{0}^{lpha}$ $^{lpha=1}$
Resolved shear stress	$ au^{lpha}$	=	$\mathbb{S}_0^{lpha}: \boldsymbol{\sigma}_{ \alpha +1/m}$
Resolved shear stress Shear rate	$\dot{\gamma}^{lpha}$	=	$\dot{\gamma}_0 \left rac{ au^-}{ au^lpha_r} ight ^* sgn(au^lpha)$
Accumulated shear	γ	=	$\sum_{\alpha=1}^N \int_0^t \dot{\gamma}^\alpha \ dt$
Hardening rate			$\overline{\beta=1}$
Hardening coefficients	$h^{\alpha\beta}$	=	$h[q + (1-q)\delta^{\alpha\beta}]$
	h	=	$h_0 sech^2 \left rac{h_0 \gamma}{ au_s - au_0} ight $

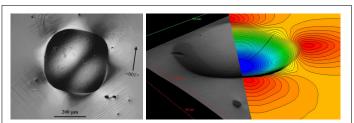


Fig. 1. : Spherical indentation into (001) CMSX-4. Left: Micrograph from experiment. Right: Perspective view on the indentation crater in experiment (left part) and simulation (right part), where pile-up hillocks emerge in <110> directions.

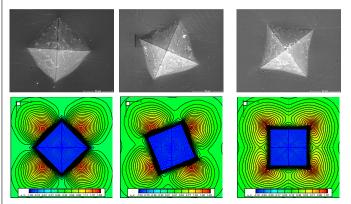


Fig. 2. : Pyramidal indentation into (001) CMSX-4. 1st row: experiment (SEM) for azimuthal orientation angle $\phi = 0^{\circ}$, 22.5°, 45°. 2nd row: Corresponding pile-up in simulations, $u_z \ [\mu m]$.

• Conclusions

(I) The pyramidal indents constantly reflect the material's cubic symmetry. Pile-up patterns invariantly emerge in $\langle 110 \rangle$ directions for different azimuthal orientations. The curved boundaries of the indent's rim stem from a local adaption of the indenter to the pile-up.

(II) Experiment and simulation show that pile-up is induced by glide on {111}<110> slip systems. It is mainly the geometry of the slip systems in the (001) oriented crystal which governs pile-up. Stress concentrations introduced by (i) different indenter shapes, by (ii) the azimuthal orientation of a pyramidal indenter and also by (iii) the type of the elasticity law, have minor influence.

(III) The "homogenized" modeling of the heterogeneous 2-phase material is adequate since accurate; it correctly predicts in FEA the pile-up pattern formation.

References

- Y. Wang, D. Raabe, D., C. Klüber, F. Roters, *Acta Mater.* 52 (2004).
- [2] B. Eidel, PhD Thesis TU Darmstadt (Shaker, Aachen, 2005).
- [3] B. Eidel, F. Gruttmann, Comp. Mat. Sci. 39 (2007).
- [4] B. Eidel, Acta Mater. 59 (2011).

B. Eidel

University of Siegen, Chair of Computational Mechanics University of Duisburg-Essen, Institute of Mechanics