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In Part 1 of this article, the author looks
at the Isotropic Work-Hardening Stress-
Strain Law and the theory of elastic-plastic
combined bending and torsion of a naturally
curved and twisted bar. Complete mathemati-

cal analyses are provided.

Residual stresses remain after the original cause of
the stresses (in-service forces, heat gradient) has been
removed'?. Residual stress also exists in the bulk of
a material without application of an in-service load
(applied force, displacement of thermal gradient).
They remain along a cross section of the component,
even without the external cause. Residual stresses
occur for a variety of reasons, including inelastic
deformations and heat treatment.

Heat from welding may cause localized expan-
sion, which is taken up during welding by either
the molten metal or the placement of parts being
welded. When the finished weldment cools, some
areas cool and contract more than others, leaving
residual stresses.

While uncontrolled residual stresses are undesirable,
many designs rely on them. For example, toughened
glass and pre-stressed concrete depend on them
to prevent brittle failure. Similarly, a gradient in
martensite formation leaves residual stress that can
prevent the opening of edge cracks. Other examples
of residual stress are shot peening and presetting
stresses.

Shot peening is widely used as a mechanical
surface treatment for many components such as
crankshafts, gears, springs, etc. During the shot

xx  Wire Forming Technology International/Winter 2011

particularly during coiling and presetting.

peening, process steel, glass or ceramic balls are
projected to the surface of the material with a high
speed. This leads to a plastic deformation of the
surface layers. To keep the cohesion between the
stretched surface and the core, these layers are then
set to overwhelmingly compressive stresses. These
compressions are compensated by tensile stresses
in the bulk of the sample.

Usually, compressive residual stress has a beneficial
effect on fatigue life and stress corrosion as it delays
crack initiation and propagation. Tensile stress on
the contrary reduces mechanical performance of
materials. In the elastic range, residual stress can
just be added to the applied stress as a static load.
For this reason, compression can allow reduction of
the stress level of the layers where the applied load
is the highest. This leads to an apparent increase of
the fatigue limit.

In the case of cyclic loading, cracks can initiate and
propagate for a stress level much lower than the
yield strength. This leads to redistribution (relax-
ation) of the residual stress. An accommodation of
the structure to the applied load takes place. It has
to be pointed out that compressive residual stress
leads to crack closure and therefore delays crack
propagation.

Residual stresses are also produced by heteroge-
neous plastic deformations, thermal contractions
and phase transformations induced by the manufac-
turing process. A common intentional use of residual
stress is in press fits.

Depending on the scale at which the matter is
analyzed, different kinds of stresses are classically
defined. Three kinds of residual stresses are usually
defined as macro stresses (or stresses of first kind)
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over a few grains, stresses of a second kind over one
particular grain and stresses of a third kind across
sub-microscopic areas (several atomic distances
within a grain). The second and third stress types
are also called micro stresses.

In this section we study an important practical
problem of residual stresses in helical springs. We
demonstrate the possibility of the creation of re-
sidual stress on the surface of helical springs and
compare the theoretically optimal distribution of
stresses and the residual stresses resulting from
modern manufacturing technology.

Helical compression springs for automotive suspen-
sions are formed either by coiling wire at ambient
conditions (cold coil) or by coiling wire that is at red
heat (hot coil)>*>5.

In the hot coiling process, cut wire segments of steel
are heated above the austenitizing temperature and
fed directly onto a mandrel that rapidly forms the
coil. The formed coil is quenched and later tem-
pered well below the austenitizing temperature.
The springs are preset with torsion residual stress
by compression to solid height (bulldozing) and
shot peened.

The primary disadvantages of the hot coiling process
are a risk of decarburization and scaling of the wire
surface. Scaling is detrimental to the fatigue perfor-
mance of the spring, since it results in crack initiation
sites on the surface. In cold coiling, wire is fed from
a spool onto a mandrel at room-temperature to form
the coil. The formed and cut coils are then stress
relieved in a furnace, bulldozed and shot peened.
Since stress relieving is done at temperatures well
below the austenitizing temperature, decarburiza-
tion and surface scaling are avoided.

As a consequence, wire for cold coiled springs can
be specified with a higher quality surface finish
and a smaller diameter than a similar spring manu-
factured by the hot coiling process. When a helical
compression spring is loaded in service, its overall
height is reduced.

Within the wire itself, the bulk of the deformation
that is necessary to make this happen is pure tor-
sion. The torsion is uniform throughout the length
of the coiled wire. Depending on end effects at
the top and bottom of a helical spring, in addi-

tion to torsion, a minor bending moment may be
introduced.

Any residual stresses are additive with these load
stresses. Their addition can be either harmful or
beneficial, depending on relative sign and magnitude.
The following three examples are significant to the
processing of helical springs (see Table 1).

Table 1: Examples of Residual Stress

* Coiling process itself introduces residual
stresses known to be detrimental to fatigue
and corrosion properties.

* Presetting a spring by bulldozing causes
yielding. On release, the surface is left
with a residual shear stress site in sign to
in-service load stress—improving the
fatigue properties.

* Shot-peening introduces uniform
compressive stresses at the surface of the
wire and is known to noticeably amplify
the fatigue resistance of springs, particularly
when it is applied after bulldozing.

Because the stress relieving anneal can also degrade
the temper of the wire, complete elimination of re-
sidual coiling stresses is not necessarily desirable.
Similarly, excessive shot peening intensity can lead
to a degradation of fatigue resistance.

Stress management in springs is therefore an op-
timization of factors including the stress relief
temperature, the wire strength, the shot peening
intensity and the presetting conditions. Knowledge
of how individual processing steps influence the
residual coiling stresses is a necessary step in the
process toward achieving a proper optimization of
residual stresses.

In this article, we apply the deformation theory of
plasticity, where the stress tensor is a function of the
strain tensor®”%. The deformation theory of plastic-
ity could be applied in problems of proportional
or simple loading, in which all stress components
increase proportionally.

According to this theory, we assume the stress-
strain law for the active plastic deformation of the
medium. The mathematical analysis for this is seen
in Table 2.
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Analytical Model for Simulation of Forming Process ...continued

Table 2 — The Isotropic Work-Hardening Stress-Strain Law.

In this article we apply the deformation theory of plasticity, where the stress tensor is a function of the strain tensor [1, 2, 3]. The deformation theory
of plasticity could be applied in problems of proportional or simple loading, in which all stress components increase proportionally. According this
theory, we assume the following stress-strain law for the active plastic deformation of the medium:

— 2 _
2.1) s=2G,(k, e=c/K,
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The scalar invariant 1 represents the intensity of shear strain. The constant K s the bulk modulus. In the Equations (51)..(5.3) instead of stress G
and strain € tensors we use the deviatoric stress tensor S the deviatoric strain tensor € :

s,=0,—0/3, s,=0,—0/3, s,=0,-0/3,
e,=&,—€l3, e,=€,—€l3, s, =€£,-€/3.

Similarly, the scalar invarinat T represents the intensity of shear stresses
[l -0} +(0,~0.F
2 _ 4 _ _ PR ( 2 2 2 )]
2.5 T*= Jlo.—0,f +lo, —o. +(o,—o ) +6lel +72 +72. ).

‘With these equations the dependence of stress intensity is the certain function of strain intensity: T=G p (F )F 2

For the linear elastic isotropic Material the dependence of stress intensity of strain intensity is linear: T= GO I.

The only material constant in this equation is the shear modulus GO‘ The bulk modulus K = 2G0 (l + v)/(3 - 6V) relates to the shear

modulus in linear elastic region. The Poisson’s ratio V' is assumed to be constant over the deformation history.

The actively deformed plastic medium could be characterized by the empiric function (5.6) with the secant modulus Gp (F2 )

The inversion of the relation (2.6) reads: I'= Fp (T2 )T 5

In our Model we postulate the following dependence of the secant modulus upon the intensity of shear strain I

2\_ Gy . 1 G
2.6) G,[?)= _ F,(1?)= T T
14— -
£, o,

with O i GO I I’x During the unload process the material demonstrates the linear elastic behavior with the initial shear modulus GO .

Use of stress-strain relations instead of the stress-strain-rate relations is theoretically admissible, if the former can be obtained from the latter by path-
independent integration [4]. One possible case of proportional or “radial” loading with fixed stress-axes and principal strain ratios is considered in this
Article. The simplification of the solutions of boundary value problems through the use of stress-strain relations instead of stress-strain-rate relations
is considerable. From the physical point of view is seems preferable to obtain an analytic solution in closed form than a rigorous that can be evaluated
for specific conditions by elaborate numerical methods.

The expressions (2.7) could be generalized, allowing more approximation constants for more adequate material descriptions. For a compressible
isotropic work-hardening material, without the distinct yielding point, as observed in the behavior of deformation, the following stress strain expres-
sions could be applied. The following generalized dependence of secant modulus upon deviatory strain reads:

2 2,2 2 2
E.+WE, +DE,,

2
81’

2.7 G,=G +|1+ (6,-6.)

Here we use the following noations for the plastic yield strain € P plastic yield stress O I =E¢ hardening exponent k and Young modulus

p’
EO =2 (1 + V)GO respectively.

. . . i 2 2 . . .
For the considered stress state of combined bending and torsion of the rod we have @~ = 3/ (1 + V) .The Poisson coefficient is assumed, as
common, to be constant during the deformation history. The stress tensor reduces to

0 0 2Ge,,
c=| 0 0 2Ge,,
2Ge, 2Ge& =BG,

Particularly, if the Poisson’s ratio is V = 1/2 we get E b5 = 3G I
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For positive values of k the secant modulus decreases, as it usually does for common metals and alloys. The limit value of stress for € —> © and

for k = }é is O » =F¢ p At this limit for K =1 the stress vanishes. The secant modulus increases for negative values of k . This is typically

for rubber or some synthetics.
The stress-strain relation (2.1) demonstrates remarkable properties. The experimental data form torsion could be approximated by (2.1) for a variety
of structural materials. There are two distinct regions for secant modulus, namely the small strain region and large strain region. The initial secant

modulus corresponds to the shear modulus of linear elasticity G: ~G.
1,0

For the large strain the asymptotical behavior of secant modulus is GS ~ Gw
Iy—e

The stress-strain law was determined experimentally for steel 54CrSi6 (DIN 10089, Material number 1.7102). The standard probes of diameter
d =2r =3.8mm were twisted to maximal value of twist rate per unit length of 6 =0.35 . The vector of torsion moment points

T .
M r(l ), n=1..N was measured for different prescribed values of twist rate 91' 1= 1.N.

To determine the stress-strain curve we need the shear stress Ti 5 i=1..N foreach value of twist rate 91 ,i =1..N . For this purpose, we have

to calculate backwards the shear stress vector from the vector of torsion moments. In other words, the inverse problem has to be solved. For this
purpose, the method of piecewise linear approximation was implemented. With this piecewise linear approximation, the stress-strain curve was as-
sumed in form

) Y~ Yia

2.8) (=7 + (Ti —Tia for y_,<y<y

i i-1
The values of vector components for shear 71. =r 01 5 i=1..N ar immediately determined from the twist rates 91 . The values of vector
components for shear stress 7, i=1.N are initially unknown variables and have to be determined from the acquired torsion moment data. The

torque is the function of the twist rate per unit length g:

r

MT(6)= Zz'fr(pa)pzdp‘

0
Substitution of the piecewise linear approximation (2.9) for T (}’) in the above integral delivers the values of vector components for moment

M,(IT) Nn= 1..N for each value of twist rate 7i ,i =1..N inthe following form

27R & 1 T,-1, R 17 -1
2. 9 M(T) =— — S i-1 : 3 _ oy + 1 ; [ 4 B 4 '
2.9 n 7. ; 3 Tin 7. Via (713 7:3—1) 7 ; 4\ 7 -7, (71 7’:—1)

forl<n<N .

T
The torque moments M ,(l ) were acquired for N initially prescribed acquisition points ;. To determine N unknown T ; the system of N
linear algebraic equations (2.10) was solved. The matrix of the linear algebraic system (2.3) possesses the upper triangle form. This solution delivers
the values of 7, I =1..N for the piecewise linear approximation (2.9) of the stress-strain law.

Our aim is to achieve a much simpler approximation of the form (2.8), which is much better suited for simulations then the piecewise linear approxi-
mation (2.9). Namely, we perform the plastic analysis of the combined bending and torsion with the stress-strain law (2.8), which is valid for an
arbitrary Poisson coefficient V' :

2k

Ve

p

7,=7,.07.)=G.7.+(G,-G.)y |1+ &

. ; ¢ e i 2 2
The magnitude of shear in this equation is Trz =4 , sz + ’Z'yz :

‘We approximate namely the determined piecewise linear approximation (2.3) of the stress-strain law by the functional law. The least square approxi-
mation with functional law delivers the following values:

G, =81.52 GPa,E, =204.45 GPa, 0, =3.205GPa,v =0.254, G, =0, k=05 .
With these values the following functional stress-strain law was obtained:
99947
Trz (0’ 7,1) e 7rz

J1+7426 72,

From this shear-strain law we deduce immediately the functional stress-strain law. Applying the expression for hydrostatic stress, the non-vanishing
components of stress tensor reduce to

2.10) o_(e..7.)=E.e. +(E,~E.)e. [1+( L+ a)zyrzz)/gf,r

7 (e..7.)=G.y. +(G, -G )y +(e.> + &y ) e2|

k
s

k
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Analytical Model for Simulation of Forming Process ...continued

Theory of Elastic-Plastic Combined
Bending & Torsion of Naturally
Curved & Twisted Bar

Combined Bending & Torsion of a Bar,
Loaded by a Terminal Bending Couple

In this article we study analytically the residual
stresses due to coiling and presetting of helical
springs. One coil of the cylindrical helical spring is
shown in Figure 1.

The theory of elastic helical spring is provided in
Sections 270, 271'°. The residual stresses in helical
compression spring could be determined analytically
with the application of plasticity theory of combined
torsion and bending of the naturally curved rod. The
preset is applied to the helical compression spring by
means of axial preset force and to the helical torsion
spring by means of preset moment.

Fig. 1 — One coil of the cylindrical helical spring under
compression force F and twist moment K.

The elasto-plastic problem of combined bending and
torsion of a straight prismatic bar, loaded by a ter-
minal bending couple about the axis of symmetry of
the cross section and a twisting couple problem was
originally discussed by Handelman'. Assuming a
Levy-Mises material, a nonlinear, partial differential
equation was derived.

For steel bars of circular section plastically strained
by combined bending and twisting couples in
constant ratio, the moment-angle relations were
reported’?. The bending and twisting moments ap-
proach the theoretical values calculated for the fully
plastic state of a plastic-rigid material. Very good
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estimates of the latter values are obtained by brack-
eting between the upper and lower approximate
values. A general relation is proposed between the
tully plastic values of bending moment, torque and
axial force when all three are applied together. This
relation applies for a wide variety of sections and is
suitable for plastic limit design.

A long prismatic member is acted upon by com-
binations of bending moments and torques of
such a magnitude so as to render the member just
fully plastic, was discussed'®. The citing paper takes
Handelman’s equation and solves it numerically for
a square section member. The stress distributions
(shear and bending) are provided in a member for
two critical combinations of moment and torque.

The Reuss equations are used' for analysis of par-
ticular combinations of twist and extension of a solid
circular cylinder. The Reuss equations are integrated
for different cases to give okastuic material shear
stress and tension. A more general case, in which
twist and extension are such as to make the ratio load
to torque constant, is solved numerically. Finally the
residual stresses are evaluated, after partial unload-
ing, for a bar which has been twisted and extended
in constant ratio.

Upper and lower approximations are obtained"
to the interaction curve of the bending and twist-
ing couples at yield for the combined bending and
twisting of cylinders of ideally plastic-rigid material.
Yield criteria expressed in the paper!s in terms of
stress resultants are obtained for typical engineering
structures, using the first fundamental theorem of
limit analysis. These yield criteria, which are often
nonlinear, are then replaced by inscribed piece-wise
linear approximations. The complete solutions based
on these approximate yield criteria provide lower
bounds; the corresponding values for the upper
bound can by obtained by multiplying the lower
bound values by a suitable factor.

The plastic flexure and torsion of prismatic beams
was studied". The prismatic bars are loaded by ter-
minal bending and twisting moments which, acting
together, cause full plastic flow. The material is as-
sumed to behave according to the Tresca-Levy-Mises
hypotheses, and in nonhardening and rigid plastic.
The results were obtained by numerical solution
of the second order nonlinear differential equation
derived by Handelman for a Levy-Mises material,
and the beam sections investigated were circular,



square and triangular. The relationships obtained
were found to give points lying virtually on a single
interaction curve plotted with nondimensional coor-
dinates. The results are consistent with the two cases
considered by Steele, who first reported a numerical
solution for a square section.

In paper’, the elasto-plastic problem of combined
bending and torsion is treated analytically for an
incompressible isotropic work-hardening material
obeying a nonlinear stress-strain law. Evolving a
theory so as to satisfy the equilibrium and compat-
ibility condition, the basic nonlinear differential
equation in the ordinal Cartesian coordinate system
can be linearized, adopting the new parameter in
the stress space.

Provided that Ramberg-Osgood’s law is employed
as a nonlinear stress-strain relation, the linearized
basic equation were reduced to the hypergeomet-
ric differential equation. Then, the components
of strain and corresponding coordinates were de-
scribed in the form of the hypergeometric series.
The numerical calculation was used for the evalu-
ation of the stress components, the bending and
twisting moment.

The paper” deals with two aspects of work to ex-
amine the elastic-plastic behavior of preloaded cir-
cular rods subjected to subsequently applied torque
within the plastic region.

In the first, uniform diameter and reduced section
rods of mild steel, fitted with strain gauges, were
subjected to initial axial yield loads using a custom
built torque-tension machine, and then holding the
initial axial displacements constant, the specimens
were gradually twisted. Then the measurements of
the resulting torque and load were recorded using
appropriate load cells as well as by the fitted strain
gauges.

Experimental results with fitted strain gauges show
that, even when the axial displacements of the pre-
loaded rods were held constant, the strain gauge
readings increase rapidly with the decrease in the
initially applied axial loads, as recorded by the ap-
propriate cell, at the confined zone where the plastic
deformation begins. Elsewhere of the specimens the
strain readings decrease due to elastic recovery of
the material.

Secondly, the experimental results thus obtained
have been compared with Brooks theoretical pre-

dictions, developed for strain-hardening material.
Results of elastic-plastic analysis for combined load-
ing were summarized in the book?.

Stress & Strain in Naturally
Curved & Twisted Solid Bar

The straight wire in its initial state before coiling of
the helical spring is seen in Figure 2. The end sec-
tions are z=0 and z = L. After coiling, the wire turns
into a naturally curved and twisted solid bar with
circular cross-section X of length L. During coiling,
the straight wire is loaded from a stress-free state by
terminal bending moment M and the terminal twist
moment T. Similarly, during preset the helical wire
is loaded from a stress-free state by terminal bending
moment M and the terminal twist moment T. Math-
ematical analysis for stress and strain in naturally
curved and twisted solid bar is given in Table 3.

Fig. 2 — Torsion and bending moments in the
cross-section of the spring wire.

To obtain additional information, contact the author
or visit the website listed below.
www.mubea.com

In Part 2 of this article, to appear in the next
issue, the author looks at the theory of elas-
tic-plastic combined bending and torsion of
naturally curved and twisted bar, application
of combined bending and torsion theory for
simulation of preset for helical springs and

the conclusions.

Winter 2011/Wire Forming Technology International ~ xx



®

Analytical Model for Simulation of Forming Process ...continued

Table 3 — Stress and strain in naturally curved and twisted solid bar.

The origin of coordinates is chosen at the centroid of area of one cross-section. The distribution of strain and stress due to above combined loading is

independent of the variable Z . Let the curvature of the axis of cylinder in pure bending is K . The strain component £, ., for the naturally curved
solid bar can be written as follows

@3.1) Su = (Ril ol R;I )x = (K— K, )x, where R =1/ K is radius of curvature of the bar during bending.

‘We neglect the curvature effects on the stress and strain, assuming that the outer radius of the bar 7 is much lower than the curvature radius R of

the bar.
The non vanishing strain components in pure torsion of naturally curved solid bar with circular cross-section of radius ¥ are the shearing strains
(3.2) 7;225}1:_(9_9,4)% 7),z:2£ﬂ:(49—49A)x

where @ is the angle of twist per unit length of the bar.
‘We use these relations for description of strains for both straight and initially twisted bars. The only difference between the straight bar and the helical

bar is the following. The curvature and the angle of twist of the straight wire vanish, such that kA =0, gA =0.

The in-plane cross-sectional shear strain }/xy =2¢ o = 0 and transversal stress components O, = O o 0

vanish. With these formulas the deformation of the rod is uniquely defined.
The axial and shear deformations in the points

x=psing, y=pcos@

of cross-section for the circular rod are respectively

ey £,(p.9)=(k-x,)psing,

ca V.(0.0)=\7.+7.=(6-6,)p.

Maximal axial strain £ = €, (r, z/ 2) = (K —K, )I"
and the maximal shear strain ) = ¥, (r, @) = (9 - HA )l"

attain on the contour of the circular cross-section. Since the strain components are independent of the variable Z , the strains, stresses and also secant
modules are the function of 0, (or X, y) only.

If the bending moment M = Mp (K"— Ky ,9 = 9A ) and torque 1= Tp (K'-— Ky, 09— HA ) increase proportionally to a single parame-

ter, such that their ratio keeps constant during the plastic deformation, the stress distributions in the cross-section are obtained with the Egs. (2.5) and
(2.6). Using the expression for strains (4.3) and (4.4) in the cross-section, we can calculate stresses during the deformation history.
The bending and torque moments applied to the end sections of the rod are

5 M,,=Zf jaz(pw)xpdp wzzﬁca(p,f/))ﬂsinwp 9
oLo oLO0

27| r
co T,=[|[z.(0.0)p%dp do.
oLo

Thus, the bending and torque moments could be derived as the functions of curvature K — K, and twist G- BA changes of the rod during the

plastic deformation.
‘We analyze the plastic loading with a nonlinear stress strain law. The curvature and twist of the bar during the plastic loading increase proportionally,
such that the ratio curvature to twist remains constant.

The integrals (4.5) of bending moment and (4.6) of torsion moment for the cases k=1/2 and k =1 are expressed in analytical form:

8% MF(K—KA,B—HA):[EM+;—6(E—EM)P(")(/1,,L1)}(K—KA)J
T

_ _ _ \l—ﬂz 8 _ (%) J,, _
G.8) Tp(zr k,,0-6,)=|3Y—"—G_+—(G-G. )" (4, u) | L (x-x,)
Y7 3z w

wih J, =20 =77 [2 ma £=rk.

The following dimensionless parameters are used:

2
— £
izzl_ka)z M , LZL_*. _P

Y7 K—K, Y
The dimensionless functions P (k)(ﬂ, /,l), Q (k)(ﬂ, ﬂ) for the integrable cases are listed below.

1.1 HARDENING EXPONENT k=1/2

The function P(I/Z)(/l, ,U) reads
PY2(2, )= p{ K (A)+ pB(A)+ ply (g, A)+ pli™?,

p(1/2) \//uz _ﬂz (14 _qu)

K ﬂﬂf‘

s

s

w2 _ M /12 -x
pE - 14

5/2

) 2"
I ,ll/’ljl

B
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w5 r (22 _uz)Z

Py

Here
‘ 1
K(/l) = I 5 > dt is the complete Elliptic integrals of the first kind,
2 - 22 )1-1)
1 2.2
1- 4t
E(ﬂ,) = '[ l—zdt is complete elliptic integrals of the second kind,
—t
0

1
1
H(,UZ 5 //L) = J > 5% > dt is the complete elliptic integrals of the third kind.
0 (l—y t )\/(l—/?,t )(l—t )
. . . (1/2) . .
The dimensionless function Q ﬂ, M ) possess the following expression
(172)

Q(m)(ﬂ,,,u)zqglz)K(ﬂ)+qg/2)E(/1)+qg/Z)H(,UZ’)L)+ do >

g VKA A - Fu? - 22u* +u)
' N1 ’
q(l/2) :_M
N
(1/2) _ (,Uz —2)(#2 —/12)5/2 ’

n ;”4#2\/1_#2
(r2) _ (2_/12)(/12 —/12)2
Y () Vo

1.2 HARDENING EXPONENT k=1
The expression P (l)(/l, ,U) reduces to
PO, )= p{"[@(2 )~ 2(0, )]+ p{.
A =2+ 47
®(A, 1) = arctan| —=—=——— |,
[2 1+21+ 7
0 __37[(,[12 +ﬂz)2

YT
= 37:(w/1+,12 —1X,u2 +2)
0 = .

4
The dimensionicss function O (A, L) is
0" (4, )= q"[®(4, 1) - 2(0, )] + ¢ .
W _ 3mua2— i \u* - 2)
(o) R
g = 37m;u(—,u2m+,u2 —/lzx,uz —12)
a1+ 2

These expressions play the fundamental role for the subsequent analysis. With this method we express analytically the bending moment M (K e 6 )

and torque T(K, 0) as the functions of curvature of the bar during bending K and the angle of twist per unit length of the bar 6.
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