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In Part 1 of this article, the author looked
at the Isotropic Work-Hardening Stress-
Strain Law and the theory of elastic-plastic
combined bending and torsion of a naturally
curved and twisted bar. Complete mathemati-

cal analyses were offered.

In Part 2 of this article, the author looks at
the theory of elastic-plastic combined bending
and torsion of naturally curved and twisted
bar, application of combined bending and
torsion theory for simulation of preset for
helical springs and the conclusions.

Application of Combined Bending
& Torsion Theory for Coiling Simulation

Residual Stresses & Modeling
of Spring Manufacturing Process

The simplest definition of residual stresses is as
follows: the stresses that remain within a part
or a component after the part or component has
been deformed and all external forces have been
removed.

More specifically, the deformation must be nonuni-
form across the material cross-section in order to
give rise to residual stresses. The deformation can
result not only from forming operations, but also
from thermal processes.

Phase transformations during heat treating are

particularly during coiling and presetting.

known to induce sufficient strain to result in plastic
deformation, thereby giving rise to residual stress-
es. In this article, we determine analytically the
residual stress, which appears in the cylindrical rod
after simultaneous plastic torsion and bending.

One of the principal foundations of mathematical
theory of conventional plasticity for rate-indepen-
dent metals is that there exists a well-defined yield
surface in stress space for any material point under
deformation.

A material point can undergo additional plastic de-
formation if the applied stresses are beyond current
yield surface, which is generally referred as plastic
loading. If the applied stress state falls within or on
the yield surface, the metal will deform elastically
only and is undergoing elastic unloading.

Although it has been always recognized throughout
the history of development of plasticity theory that
there is indeed inelastic deformation accompanying
elastic unloading, which leads to a metal’s hyster-
etic behavior. Its effects are usually negligible and
are ignored in the mathematical treatment.

In the subsequent section of this article we investi-
gate the two manufacturing processes (the coiling
and the presetting), analytically.

Stresses During Plastic Coiling

& Subsequent Elastic “Spring-Back”

of Spring Wire

A cylindrical solid bar with circular cross-section
of length L is loaded during the spring coiling
from a stress-free state by terminal bending mo-
ment and the terminal twisting moment. For the



straight bar in its free state prior to coiling, one coil
of the resulted helical spring is shown in Figure 3.
The plastic stresses during the manufacturing and
residual stresses in helical springs are calculated
using the analytical formulas in Part 1 of this article.

In the moment of coiling, the spring wire undergoes
simultaneous bending and torsion. Consider a helical
spring with the constant coiling radius and pitch. At
the moment of coiling, when the ultimate plasticiza-

tion occurs, the coiling radius is assumed to be Ro.

The pitch of one coil at the moment of coiling is
Ho. The local shape of the spring at the moment of
coiling is a circular helix*. This is shown below in
Figure 5.

The mathematical analysis of stresses during the
plastic coiling and subsequent elastic “spring-
back” of the spring wire in seen in Figure 5 and
in Figure 6.

Fig. 5 — Local shape of the spring at moment of coiling is a circular helix.

The local shape of the spring at the moment of coiling is a circular helix:

X =R,cost,Y =R,sint,Z=H .

The immediate curvature X, and torsion W, of the helix at the moment of coiling is
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The angle of twist per unit length in terms of torsion is 8, = (27[ ) W, -

In the moment, which follows immediately after coiling, the wire unloads elastically and forms the helical spring with
unloaded curvature X', and torsion W, . The unloaded curvature and torsion of the wire are

R H
4 w, =270, = A

Ky=—7"—, L
R’>+H,’ R’+H,

With these values, we calculate finally the unloaded radius R, and pitch H , of the spring “as coiled” respectively as

Shear stress in the cross section at maximal plasticization state in the moment of coiling
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Analytical Model for Simulation of Forming Process ...continued

Fig. 6 — Stresses during the plastic coiling and subsequent elastic “spring-back” of springwire.

For comparison, we use the experimental measurements of residual stresses in cold-coiled helical compression springs. The comparison is performed
for as-coiled springs in central coils of reported diameter 2R A= 160mm and pitch H A= 100mm . For the spring manufacturing the Cr-Si

wire is used. The diameter is 21 = 14mm . The calculation results for plastic state in the spring material during manufacturing process are shown
on the Figs. 4-8. The maximal plastic bending moment is 741 Nm. The plastic torque moment is 193 Nm.

The unloaded pitch is HO =109mm and the radius is 2R0 =144mm . For simulation we use the functional modified stress-strain rela-

tions with kK = % . The stress components and equivalent stress at the state of maximal plasticization are shown on the Fig. 3-6. The shear stress

2 2 8 ) " & B
T —— 1"1’ - + Tyz over the cross-section is demonstrated on Fig. 3. The maximum of the shear stress is 170 MPa. In the centre of the cross
section the stress vanishes. With the increasing radius the stress increases at first linearly with radius of the observation point, but on the outer surface

of the rod the bending dominates, such that the shear stress stagnates. The normal axial stress O, at the maximal plasticization point a=1in-

creases from the value & = —1800MPa on the outmost outer point of the spring body ( X = —F") to the value O = 1800MPa on the

inner point (X =7 ). At X = 0 the bending stress disappears. The distribution of bending stress is mirror-symmetric due to the neutral axis

x=0.

Fig. 4 - Axial normal stress in the cross section at maximal plasticization state in the moment of coiling

i G=1850MP

G=1300MP

Fig. 5 - Equivalent stress in the cross section at maximal plasticization state in the moment of coiling
The equivalent stress (Fig. 4) in the spring cross-section is symmetric due to the neutral axis X = 0. The maximal value o, = 1850MPa is

attained on the outmost outer and inner points of the cross section. In the centre of the cross-section both shear and axial stress disappear, such that the
equivalent stress vanishes. The plots of equivalent, shear and bending stresses on the outer contour of the circular cross-section are given on Fig. 6.

The next figures (Fig.7-11) show components and equivalent stress at the final unloaded state of spring (spring as-coiled).The equivalent residual
stress is plotted on the Fig. 7. The equivalent stress in the unloaded state over the spring cross-section is also symmetric due to the neutral

axis x =0 , but its maximal value is located in the inner regions of the cross-section.
P

‘Axial normal Stress due
. to bending

Fig. 6 - Plastic stresses on the contour of the cross-section at maximal plasticization state in the moment of coiling
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Gy=1200MP
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Fig. 7 - Residual equivalent stress at the unloaded state immediately after coiling (spring “as coiled”)

The graph of residual shear stress and the axial stress are on the Fig. 8 and Fig. 9 correspondingly. The plots of equivalent, shear and bending stresses

on the outer contour of the circular cross-section are given on Fig. 10.
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Fig. 8 - Residual shear stress at the unloaded state immediately after coiling (spring “as coiled”)
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Fog. 9 - Residual axial normal stress at the unloaded state immediately after coiling (spring “as coiled”)
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Fig. 10 - Residual stresses on the contour of the cross-section at the unloaded state immediately after coiling (spring “as coiled”)

The profile of equivalent, shear and bending stresses along the y = 0 ,also — ¥ < X < I is plotted on the Fig. 7 on next page.

The figures demonstrate that the maximal equivalent, shear and bending stresses are located in the inner region of the cross section and are approxi-
mately 10-15% higher, than the corresponding maximal stress in the outer regions and on the surface of the cross-section. The simulated values of
axial stress demonstrate an excellent correlation to the acquired values for axial normal stress due to bending, reported in the cited paper of

MATEJICEK et al.
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Analytical Model for Simulation of Forming Process ...continued

Application of Combined Bending &
Torsion Theory for Simulation of
Preset for Helical Springs

Unstressed Helical Compression Springs

The primary loading of helical compression springs
is in torsion. This means that the wire will see tensile
stresses oriented 45° to the wire axis and compressive
stresses oriented 90° to the tensile stresses. The tensile
applied stress has components in both the longitudinal
and transverse directions. Therefore, a helical compres-
sion spring will be adversely impacted by both longi-
tudinal and hoop residual stresses from wire drawing,
hoop stresses from oil quenching and tensile bending
stresses on the inside diameter from coiling.
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The resulting residual stresses can be considerably
reduced by the presetting and stress-relieving follow-
ing the cold coiling. Presetting of helical compression
springs consists of compressing the spring to a point at
which plastic deformation occurs. Provided stress levels
are sufficiently high to induce plastic deformation, this is
typically carried out by compressing springs to or very
near solid height. As a minimum, the springs should be
compressed below the minimum operating height. This
compression places the wire in torsion sufficient to in-
duce plastic deformation in the outer fibers. The residual
stress state is not uniform around the wire cross-section
because the curvature of the wire alters the stress state
from pure torsion during the compression.

The modeling of presetting process accounts the cyclic
plastic loading. Classical plasticity theory is based on
the concept of the yield surface. The movement of
the yield surface under cyclic loading is described by
the kinematical hardening rule and the dimensional
change of the yield surface is described by the isotropic
hardening rule.

The residual strains at the state of complete elastic
unloading after active presetting could be obtained
immediately subtracting the elastic stresses from stress
components at the state of maximal presetting com-
pression. Since the residual stress is mainly in torsion,
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there will be a tensile component and a compressive
component each at 45° to the wire axis. As was the case
with the simple beam in bending example, the orienta-
tion of the residual stress is opposite to the orientation
of the applied stress. Therefore, if loads in service are
applied in the direction of the presetting load, the
residual stresses from presetting will provide a net
reduction in total stress under the service load.

For simulation of preset process, consider the un-
stressed helical compression spring with a central line
of a curve with constant curvature and tortuosity. We
use the index A to mark the geometry in the unstressed
state, assuming that the residual stresses disappear
during annealing process. Thus, the central line repre-
sents the helix traced on a right circular cylinder.
The angle which the tangent at any point of the un-
stressed helix makes with a plane at right angles to this
axisis a4 (pitch angle). Let the Ra be the radius of cylinder
on which helix lies. Then the curvature K4 and the mea-
sure of tortuosity 04 (the angle of twist per unit length)

of unstressed spring are given by the equation:
cos’ @, sin@, cosa,
A= > eA = .
RA RA
The mathematical analysis for the state of maximum
plasticization during preset is given in Figure 8.

The mathematical analyses for elastic spring-back of
helical spring and residual stresses after preset, and
the residual stresses in helical springs after preset are
given in Figure 9.

Conclusions

In this article, we simulate analytically two essential
steps of spring manufacturing, namely the coiling and
preset of the helical spring:

*The coiling process is the deformation of the initially
straight rod to the helix. During this forming proc-
ess the material flows plastically. Immediately after
the moment of coiling the spring-back occurs. The
residual stresses appear namely in the moment of
elastic spring-back, which follows the plastic coiling
of the spring. The formed coils are then stress re-
lieved in a furnace, such that the relaxation process
occurs and residual stresses disappear.

ePresetting a spring by bulldozing causes yielding.
During this forming process the material flows plasti-
cally once again. On release, the spring-back of wire
takes place and the surface is left with a residual shear
stresses site in sign to the in-service load stress, thus
clearly improving fatigue properties.

A list of symbols used in this article is presented in
Table 1. For more information, contact the author or
visit the website: www.mubea.com



Table 1. List of Symbols Used in this Article.

R; Radius at the moment of coiling (coiling radius)
H, Pitch of one coil at the moment of coiling

Ky Curvature of the helix at the moment of coiling
W, Torsion of the helix at the moment of coiling

9, = (2 ”)- The angle of twist per unit length (measure of tortuosity) at the moment of coiling
=

a, Pitch angle of unstressed spring
R, The radius of unstressed spring

X\ Curvature of unstressed spring

8, Measure of tortuosity of unstressed spring

o’ Normal stress in the state B of maximal plasticization

r: Shear stress in the state B of maximal plasticization

a,; Pitch angle of spring in the state at full stroke during preset

R, Radius of spring in the state at full stroke during preset

P Curvature of spring in the state at full stroke during preset

8, Measure of tortuosity of spring in the state at full stroke during preset
F, "Axial force of helical spring at preset

K, Couple of helical spring at preset

o€ Normal residual stress in unloaded state C

< Shear residual stress n unloaded state C

(Z; Pitch angle of helix in the unloaded state after preset

Rc Radius of helix in the unloaded state after preset

Ke Curvature of helix in the unloaded state after preset

9C Measure of tortuosity of helix of the unloaded state after preset

M, Bending moment in spring wire during the active plastic loading

T, Torsion moment in spring wire during the active plastic loading

M, Bending moment in spring wire during the elastic unloading

T, Torsion moment in spring wire during the elastic unloading

my Bending moment in spring wire at the state of maximal plasticization

Torsion moment in spring wire at the state of maximal plasticization

J = l[ré/ Polar moment of the circle with radius r

J = 7" [4) Bending moment of the circle with radius 7

G, E, v, | Elastic constants of isotropic elastic material

K
& Plastic yield strain
»
& — Ee_ | Plastic yield stress
» »
% Hardening exponent
G. Secant modulus

pr) Qm Dimensionless functions in plastic moment-strain relations

Au Dimensionless parameters
q:—:', 17}1” . Dimensionless functions
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Fig. 8 — State of maximum plasticization during preset.
We use the index B to mark the geometry in the state at full stroke during preset. The line of action of the compression
force F, and of the torsion moment K is parallel to the axis of the helix. The curvature K, and the measure of

tortuosity &y of stressed spring are given by the equations

_cos’a, g, SN cosay
= s Up — B

5.1) k,
( ) ? RB RB

where Ry, @y are the radius and the angle of the helix in the state of full stroke B.
During the loading form the initial state A to final state B the deformation of the helical spring is accompanied by the
plastic flow of material. Assuming, that the maximal curvature K and the measure of tortuosity @ at the state of

maximal plasticization B are given, the moments 771, and ?, at the state of maximal plasticization could be find from
(5.2) Mp(KB — K0, - HA) =my, Tp(KB —K,, 6, _eA)=tB >
The bending moment M p(K'B -K,,6,—0,) and torque T (x, —K,,0, —6,) are the functions of difference of

curvature of the naturally curved bar during bending X — Kk, and difference of tortuosity &5 —8@, . The bending mo-
ment and torque relate to the local coordinate system of the cross-section of the wire.
The new configuration can be maintained by a wrench of which the axis is the axis of the helix, and the force F, and

couple K, are given by the equations
(5.3) tycosay, —mysina, = R, Fy,

tgsina, +mycosa, =K.
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Analytical Model for Simulation of Forming Process ...continued

Fig. 9 — Elastic spring-back of helical spring and residual stresses after preset,
and the residual stresses in helical springs after preset.

‘The moments during the elastic unloading from the state B to the intermediate state with the current curvature 0< k<K, p and the measure of

tortuosity 0 < g< HB are

oy Mk~ k.6, —0)=my—EJ (k, —k).T,(k; — k.6, —0) =1, —GJ (6, - 6).

‘We use the index C to mark the geometry in the unloaded state. For a bar which has been twisted and bended in constant ratio, the residual stresses
after unloading are evaluated below. At the state of complete elastic unloading

cos’ &, sin@. cos .
K, c= . 9C = is the unloaded bending radius and HC is angle of twist/unit length of bar respectively.
RC C
At the state of complete elastic unloading C helical spring is free and moments disappear. The conditions, that bending moment and torque vanish:
my — EJ (i, - .)=0, t,~GJ,(6,-6:)=0.
From these equations we obtain the resultant curvature and tortuosity of helical spring after preset:
m, 7
Ke=Kp— 2, O =65 — =
EJ G,

RESIDUAL STRESSES IN HELICAL SPRINGS AFTER PRESET
In this section we study the preset by means of axial compression of the spring. The numerical calculation were performed for
= . B = . =U.5 =0U.1. e resulted geometry of spring is characterized by the values
R,=Ry,=60mm, r=Tmm, a,=0.3, oz =0.1. ™ lted f spring is characterized by the val
R. =60.47mm 0, =0.145.
B B . . . - PSP
The stresses components O . (p, ¢). Trz (p, (p) in each point of the cross-section at the moment of maximal plasticization could be calculated

using Egs. (2.5) and (2.6).
The residual strains at the state of complete elastic unloading after preset could be obtained immediately subtracting the elastic stresses from stress

c c
components O, (x, y). 7. (x, y) at the plastic state:

c _ B . c _ B
0% (p.9)=0%(p.0)- (ks ~ K. JE psing. 75 (0.0) = 72 (p.0)- (6, - 6. )Gp.
With the expressions (48) for unloaded curvature and unloaded twist per unit length we get finally the expressions for residual stresses

psing p

Gi(p,rﬂ)wi(p,(o)—TmE ’f,i(p,(p):rfi(p,cv)—]ftg-
P

Figure 12: Residual shear T, 5 ( £ ¢) stress after preset

‘The residual stresses after preset exhibit Figures 12-14. The residual shear 7, (p, ¢) (Fig.12) stress due to torsion depends mostly on radius 0

and demonstrates a weak dependence on polar angle 0. On the boundary of cross-section ) =¥ the shear stress is about -75 MPa and therefore
. . C . L "
reduces the in-service stresses. The bending stress O ( P, ¢)) is positive on the surface of boundary of cross-section 0 =1 at ) = 0..The

stress O'z('; (p, ¢) is negative on the surface of boundary of cross-section 0 =71 at ( = 7T (Fig.13).

(p, ¢))2 + 3(1_2 (p, §0))2 is similar to shear stress (Fig.14).

The equivalent residual stress depends mostly on radius £ and demonstrates a weak dependence on polar angle ¢0 . The total shear stress is the sum

€
The pattern of equivalent residual stress \/ (O' =

of the in-service shear stress 4M /7D'3 and residual stress Tri (p, ¢), such that

~ 120 MPa

P 160 MPa

i

Figure 14: Residual equivalent stress after preset

Figure 13: Residual normal stress O, ZC; (p, ¢) after preset

On the outer surface of the wire the technologicall issible residual stress is il constant. Residual shear stresses site in sign to the in-
service load stress, thus clearly improving fatigue properties.
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