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The Allocation Problem 

 
 Total exposure normalized to 1 

 
 n ≥ 2 counterparts 

 known default probabilities pi 

 known dependence structure 
 otherwise equal offers 

 
 What is the optimal allocation? 

 What does „optimal“ mean? 
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Agenda 

 Some Basics of Risk Measures 
 Value at Risk, Expected Shortfall, Coherent and Spectral Risk Measures 

 
 Examples and Results 

 Risk Measures as an Approach to the Allocation Problem 
 Consequences and Limitations 

 
 Expected Utility Framework 

 Analytical Derivation of Optimal Allocations 

 
 Lessons Learned 

 Implications for Risk Governace 
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Value at Risk 
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Expected Shortfall 
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Expected Shortfall as a Coherent Risk Measure 

1. Monotonicity: 
 ES(X) ≤ ES(Y) for X ≥ Y 
 

2. Positive Homogeneity: 
 ES(a ⋅ X) = a ⋅ ES(X) for a > 0 
 

3. Translation Invariance:  
 ES(X + b) = ES(X) – b 
 

4. Subadditivity: 
 ES(X + Y) ≤ ES(X) + ES(Y) 
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Spectral Risk Measures 

 Subclass of coherent risk measures 
 

 Defined by a „risk spectrum“ ϕ whichs weights the importance 
of the quantiles for the risk assessment 

𝑅𝜑 𝑋 = −�𝐹𝑋−1 𝑞  𝜑 𝑞  𝑑𝑑
1

0

 

 
 Expected Shortfall is a spectral risk measure with risk spectrum 

𝜑 𝑞 = �1/𝛼, 𝑞 ≤ 𝛼
      0, 𝑞 > 𝛼 
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Example: 2 Counterparts 

 p1 = 2%; p2 = 3%; ρ = 0 
 Minimize Expected Shortfall (with α = 2.5%)! 
 Allocation: x1 ≥ x2 = 1 – x1 
 

𝐿 = �

1
𝑥1

1 − 𝑥1
0

     

0.06%
1.94%
2.94%

95.06%

 

 

𝐸𝐸2.5% =
0.06% ∙ 1 + 1.94% ∙ 𝑥1 + 0.50% ∙ (1 − 𝑥1)

2.5%
= 0.224 + 0.0144 ∙ 𝑥1 
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Expected Shortfall for Different Quantiles 
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Interim Conclusion 

 Expected Shortfall as a decision tool yields polar solutions: 
Depending on α, either x1 = 1 or x1 = 0.5 is optimal 
 

 Economic Intuition 
 For α → 100%, ES → E 
 For small values of α, the avoidance of large losses is dominant 

 
 Technical Reason 

 For a given loss distribution, ES(x1) is linear 
 Only corner solutions can be optimal 
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Corner Solutions (n = 3) 

 Four possible corner solutions 
a)  x1 = 1.00; x2 = 0.00; x3 = 0.00 
b)  x1 = 0.50; x2 = 0.50; x3 = 0.00 
c)  x1 = 0.50; x2 = 0.25; x3 = 0.25 
d)  x1 = 0.33; x2 = 0.33; x3 = 0.33 
 

 Example: p1 = 1.0%, p2 = 2.0%, p3 = 3.0%, ρ = 0.3 
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Solutions for n = 5 

pj = j %; ρ = 0.3 
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Solutions for n = 10 

pj = j %; ρ = 0.3 
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Risk Measures for Decision Making? 

 Original scope of 
coherent risk measures (Artzner et al., 1999) and 
spectral risk measures (Acerbi, 2002): 
regulatory context (side condition) 
 

 Application for economic decision making (target function): 
 Portfolio selection (Adam et al., 2008) 
 Credit portfolio management (Iscoe et al., 2012) 

 
 Translation invariance and positive homogeneity invoke 

tendencies to corner solutions 
(Brandtner, 2013; Brandtner/Kürsten, 2015) 
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Maximizing Expected Utility (2 Counterparts) 

 Eu(x) → Max! 
 Current wealth level c 
 Final wealth level x = c – L 

 

𝑥 = �

𝑐 − 1
𝑐 − 𝑥1

𝑐 − (1 − 𝑥1)
𝑐

     

𝑝12
𝑝1
𝑝2
𝑝∅

 

 
𝐸𝐸 𝑥 = 𝑝12𝑢 𝑐 − 1 + 𝑝1𝑢 𝑐 − 𝑥1 + 𝑝2𝑢 𝑐 + 𝑥1 − 1 + 𝑝∅𝑢(𝑐) 
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First-Order Condition 

𝐸𝐸 𝑥 = 𝑝12𝑢 𝑐 − 1 + 𝑝1𝑢 𝑐 − 𝑥1 + 𝑝2𝑢 𝑐 + 𝑥1 − 1 + 𝑝∅𝑢 𝑐  

 
𝜕𝐸𝐸 𝑥
𝜕𝑥1

= −𝑝1𝑢′ 𝑐 − 𝑥1 + 𝑝2𝑢′ 𝑐 + 𝑥1 − 1  

 
Taylor series of first order around c – 0.5 
 

𝜕𝐸𝐸 𝑥
𝜕𝑥1

≈ −𝑝1 𝑢′ 𝑐 − 0.5 + 0.5 − 𝑥1 𝑢𝑢𝑢 𝑐 − 0.5

+ 𝑝2 𝑢′ 𝑐 − 0.5 + 𝑥1 − 0.5 𝑢𝑢𝑢 𝑐 − 0.5  
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Solution 

0 = −𝑝1 𝑢′ 𝑐 − 0.5 + 0.5 − 𝑥1 𝑢𝑢𝑢 𝑐 − 0.5
+ 𝑝2 𝑢′ 𝑐 − 0.5 + 𝑥1 − 0.5 𝑢𝑢𝑢 𝑐 − 0.5  

 
⇔ 0 = −𝑝1 1 + 0.5 − 𝑥1 𝜂 + 𝑝2 1 + 𝑥1 − 0.5 𝜂  

 

with the Arrow-Pratt coefficient of risk aversion  𝜂 = −𝑢′′(𝑐−0.5)
𝑢′(𝑐−0.5)

 

Solution: 

𝑥1 =
𝑝2 − 𝑝1 + 0.5𝜂(𝑝1 + 𝑝2)

𝜂(𝑝1 + 𝑝2)  
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Example 
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Multivariate Case 

Langrangian Approach 
 

𝜆 + �𝑥𝑖

𝑛

𝑖=1

� 𝑝𝐼
𝐼:𝑖,𝑗∈𝐼

= − � 𝑝𝐼 1 − 0.5𝜂
𝐼:𝑗∈𝐼

,    𝑗 = 1, … , 𝑛 

 
𝐼 ⊂ 1, … , 𝑛  

 
Linear system with n + 1 equations and n + 1 variables 
 
but 𝒪 2𝑛  
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Solutions for n = 5 

pj = j %; ρ = 0.3 
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Round-up 

 
Expected-Utility approach yields reasonable solutions 

 
 in line with economic intuition 
 easy to calculate with analytical tractability 
 operationalizable via Arrow-Pratt coefficient of risk aversion 
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Summary 

 Allocation problem needs a precise formulation 
 What is the target function? 

  
 Minimization of spectral risk measures may lead to economically 

implausible solutions 
 Tendency to corner solutions 

because of translation invariance and positive homogeneity 

 
 Application of expected utility theory is advantageous 

 Natural target function 
 Measuring risk via Arrow-Pratt coefficient of risk aversion 
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Implications for Risk Governance 

 
 Awareness for the scope of models and measures 

 Know what your models are doing! 
 Know what they are good for! 
 Know what they are not good for! 

 
 Interdisciplinary teams for risk model design 

 
 (Basic) Understanding of models and measures at C-level 

(Chief Risk Officer) 
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„The moment you have worked out an answer, start checking it – 

it probably isn‘t right.“ 
 

Edmund C. Berkeley 
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