

Risk Measures and Counterparty Risk

Rainer Baule

5th Annual Conference on Risk Governance

Siegen, 5th October 2017

Prof. Dr. Rainer Baule

The Allocation Problem

- Total exposure normalized to 1
- $n \ge 2$ counterparts
 - known default probabilities p_i
 - known dependence structure
 - otherwise equal offers
- What is the optimal allocation?
 - What does "optimal" mean?

Agenda

Some Basics of Risk Measures

• Value at Risk, Expected Shortfall, Coherent and Spectral Risk Measures

Examples and Results

- Risk Measures as an Approach to the Allocation Problem
- Consequences and Limitations
- Expected Utility Framework
 - Analytical Derivation of Optimal Allocations
- Lessons Learned
 - Implications for Risk Governace

Value at Risk

Expected Shortfall

Expected Shortfall as a Coherent Risk Measure

- 1. Monotonicity: $ES(X) \le ES(Y)$ for $X \ge Y$
- 2. Positive Homogeneity: $ES(a \cdot X) = a \cdot ES(X)$ for a > 0
- 3. Translation Invariance: ES(X+b) = ES(X) - b
- 4. Subadditivity: $ES(X + Y) \le ES(X) + ES(Y)$

Spectral Risk Measures

- Subclass of coherent risk measures
- Defined by a "risk spectrum" φ whichs weights the importance of the quantiles for the risk assessment

$$R_{\varphi}(X) = -\int_{0}^{1} F_{X}^{-1}(q) \,\varphi(q) \,dq$$

• Expected Shortfall is a spectral risk measure with risk spectrum $\varphi(q) = \begin{cases} 1/\alpha, & q \leq \alpha \\ 0, & a > \alpha \end{cases}$

Agenda

- Some Basics of Risk Measures
 - Value at Risk, Expected Shortfall, Coherent and Spectral Risk Measures

Examples and Results

- Risk Measures as an Approach to the Allocation Problem
- Consequences and Limitations
- Expected Utility Framework
 - Analytical Derivation of Optimal Allocations
- Lessons Learned
 - Implications for Risk Governance

Example: 2 Counterparts

•
$$p_1 = 2\%; p_2 = 3\%; \rho = 0$$

- Minimize Expected Shortfall (with $\alpha = 2.5\%$)!
- Allocation: $x_1 \ge x_2 = 1 x_1$

$$L = \begin{cases} 1 & 0.06\% \\ x_1 & 1.94\% \\ 1 - x_1 & 2.94\% \\ 0 & 95.06\% \end{cases}$$

$$ES_{2.5\%} = \frac{0.06\% \cdot 1 + 1.94\% \cdot x_1 + 0.50\% \cdot (1 - x_1)}{2.5\%}$$
$$= 0.224 + 0.0144 \cdot x_1$$

Expected Shortfall for Different Quantiles

Interim Conclusion

- Expected Shortfall as a decision tool yields polar solutions: Depending on α , either $x_1 = 1$ or $x_1 = 0.5$ is optimal
- Economic Intuition
 - For $\alpha \rightarrow 100\%$, ES \rightarrow E
 - For small values of α , the avoidance of large losses is dominant
- Technical Reason
 - For a given loss distribution, $ES(x_1)$ is linear
 - Only corner solutions can be optimal

Corner Solutions (n = 3)

- Four possible corner solutions
 - a) $x_1 = 1.00; x_2 = 0.00; x_3 = 0.00$
 - b) $x_1 = 0.50; x_2 = 0.50; x_3 = 0.00$
 - c) $x_1 = 0.50; x_2 = 0.25; x_3 = 0.25$
 - d) $x_1 = 0.33; x_2 = 0.33; x_3 = 0.33$
- Example: $p_1 = 1.0\%$, $p_2 = 2.0\%$, $p_3 = 3.0\%$, $\rho = 0.3$

Quantile	0.2%	0.5%	1%	2%	5%	10%
Solution	d	b	d	d	а	а

Solutions for n = 5

$$p_j = j\%; \rho = 0.3$$

Solutions for n = 10

$$p_j = j\%; \rho = 0.3$$

Risk Measures for Decision Making?

- Original scope of coherent risk measures (Artzner et al., 1999) and spectral risk measures (Acerbi, 2002): regulatory context (side condition)
- Application for economic decision making (target function):
 - Portfolio selection (Adam et al., 2008)
 - Credit portfolio management (Iscoe et al., 2012)
- Translation invariance and positive homogeneity invoke tendencies to corner solutions (Brandtner, 2013; Brandtner/Kürsten, 2015)

Agenda

- Some Basics of Risk Measures
 - Value at Risk, Expected Shortfall, Coherent and Spectral Risk Measures
- Examples and Results
 - Risk Measures as an Approach to the Allocation Problem
 - Consequences and Limitations

Expected Utility Theory Framework

Analytical Derivation of Optimal Allocations

Lessons Learned

Implications for Risk Governance

Maximizing Expected Utility (2 Counterparts)

- $Eu(x) \rightarrow Max!$
- Current wealth level *c*
- Final wealth level x = c L

$$x = \begin{cases} c - 1 & p_{12} \\ c - x_1 & p_1 \\ c - (1 - x_1) & p_2 \\ c & p_{\emptyset} \end{cases}$$

$$Eu(x) = p_{12}u(c-1) + p_1u(c-x_1) + p_2u(c+x_1-1) + p_{\emptyset}u(c)$$

First-Order Condition

$$Eu(x) = p_{12}u(c-1) + p_1u(c-x_1) + p_2u(c+x_1-1) + p_{\emptyset}u(c)$$

$$\frac{\partial Eu(x)}{\partial x_1} = -p_1 u'(c - x_1) + p_2 u'(c + x_1 - 1)$$

Taylor series of first order around c - 0.5

$$\frac{\partial Eu(x)}{\partial x_1} \approx -p_1[u'(c-0.5) + (0.5 - x_1)u''(c-0.5)] + p_2[u'(c-0.5) + (x_1 - 0.5)u''(c-0.5)]$$

Solution

$$0 = -p_1[u'(c - 0.5) + (0.5 - x_1)u''(c - 0.5)] + p_2[u'(c - 0.5) + (x_1 - 0.5)u''(c - 0.5)]$$

$$\Leftrightarrow 0 = -p_1[1 + (0.5 - x_1)\eta] + p_2[1 + (x_1 - 0.5)\eta]$$

with the Arrow-Pratt coefficient of risk aversion $\eta = -\frac{u''(c-0.5)}{u'(c-0.5)}$ Solution:

$$x_1 = \frac{p_2 - p_1 + 0.5\eta(p_1 + p_2)}{\eta(p_1 + p_2)}$$

Example

Multivariate Case

Langrangian Approach

$$\lambda + \sum_{i=1}^{n} x_i \left(\sum_{I:i,j \in I} p_I \right) = -\sum_{I:j \in I} p_I (1 - 0.5\eta), \qquad j = 1, \dots, n$$
$$I \subset \{1, \dots, n\}$$

Linear system with n + 1 equations and n + 1 variables

but $\mathcal{O}(2^n)$

Solutions for n = 5

$$p_j = j\%; \rho = 0.3$$

Round-up

Expected-Utility approach yields reasonable solutions

- in line with economic intuition
- easy to calculate with analytical tractability
- operationalizable via Arrow-Pratt coefficient of risk aversion

Agenda

- Some Basics of Risk Measures
 - Value at Risk, Expected Shortfall, Coherent and Spectral Risk Measures
- Examples and Results
 - Risk Measures as an Approach to the Allocation Problem
 - Consequences and Limitations
- Expected Utility Theory Framework
 - Analytical Derivation of Optimal Allocations

Lessons Learned

Implications for Risk Governance

Summary

- Allocation problem needs a precise formulation
 - What is the target function?
- Minimization of spectral risk measures may lead to economically implausible solutions
 - Tendency to corner solutions because of translation invariance and positive homogeneity
- Application of expected utility theory is advantageous
 - Natural target function
 - Measuring risk via Arrow-Pratt coefficient of risk aversion

Implications for Risk Governance

- Awareness for the scope of models and measures
 - Know what your models are doing!
 - Know what they are good for!
 - Know what they are not good for!
- Interdisciplinary teams for risk model design
- (Basic) Understanding of models and measures at C-level (Chief Risk Officer)

"The moment you have worked out an answer, start checking it – it probably isn't right."

Edmund C. Berkeley