Conservatism in Risk Disclosure Tone and Stock Price Crash Risk

Anke Müßig, Nijat Hajikhanov, Thomas Kaspereit, Véronique Weber, Kerstin Lopatta

The 11th Annual Risk Governance Conference University of Siegen October 19-20, 2023

Dr. Nijat Hajikhanov

University of Luxembourg

Table of contents

- Overview
- <u>Research question</u>
- <u>Research design</u>
- <u>Sample</u>
- Linguistic negativity bias
- Main results/ H1
- Main results/ H2
- Marginal effect plot/ H3
- <u>Conclusion</u>

Overview

than to positive news

What is risk tone? Example from report

Overview

Whether tone of the risk disclosure is more responsive to negative news than to positive news

Overview

Risk tone conservatism

Research question

- H1: What is the responsiveness of risk disclosure tone to bad versus good news? Risk tone conservatism
 - Impression management (upside risks)
 - Expectation management (downside risks)
 - Accounting conservatism spills
- H2: What is the association with stock price crash risk?
 - Risk sentences is associated with negative stock returns (Kravet & Muslu, 2013)
 - Curbs bad news hoarding behaviour
 - More precise estimates and awareness of risk
- H3: What is the association with accounting conservatism?
 Consensus between 'hard' and 'soft' types of disclosures
 The emphasis framing theory (Henry & Peytcheva, 2018)
 Truthfulness of all types of disclosures
 Complements

Research design

• **H1**:
$$RISK_TONE_{j,t} = \delta_1 + \delta_2 D_{j,t} + \delta_3 RET_{j,t} + \delta_4 D_{j,t} RET_{j,t} + \psi_{j,t}$$

• **H2**:
$$CRASH_{j,t+1} = \pi_0 + \rho CRASH_{j,t} + \pi_1 T_CSCORE_{j,t} + \pi_2 CON_{j,t} + \tau_t + \eta_j + \epsilon_{j,t}$$

• **H3**:
$$CRASH_{j,t+1} = \pi_0 + \rho CRASH_{j,t} + \pi_1 T_CSCORE_{j,t} + \pi_2 A_CSCORE_{j,t} + \pi_3 T_CSCORE_{j,t} \times A_CSCORE_{j,t} + \pi_4 CON_{j,t} + \pi_t + \eta_j + \epsilon_{j,t}$$

Risk tone conservatism × Accounting conservatism

Sample

- Compustat Global Annual and Security Daily
- Thomson Reuters Eikon
- 27 European Economic Area (EEA) countries
- 2002-2017
- 6,614 firm-year observations

Linguistic negativity bias

Main results/ H1

 Risk tone is more sensitive to negative returns as it is to positive returns, hence risk tone conservatism

		l
	(1)	(2)
Dependent variable Variables	RISK_TONE	RISK_TONE
RET	0.023***	0.002
D	(0.005)	(0.006) -0.275*** (0.096)
D × RET		0.149*** (0.015)
Constant	0.125*** (0.010)	0.128*** (0.009)
Year effect	Yes	Yes
Observations	13378	13378
adi. R^2	0.062	0.070

Main results/ H1

Main results/ H2

 Risk tone conservatism (*T_CSCORE*) is associated with a lower likelihood of future stock crash risk

	Estimator: Systems GMM			
Dependent variable Variables	(1) NCSKEW _{t+1}	(2) $DUVOL_{t+1}$	(3) NCSKEW _{t+1}	(4) <i>DUVOL</i> _{t+1}
	(0.059)	(0.020)	(0.058)	(0.018)
OPAQUE	0.280	0.208*	0.246	0.173
	(0.406)	(0.121)	(0.404)	(0.119)
OPAQUE2	-0.024	-0.221	Ò.039 [´]	-0.162
	(0.556)	(0.166)	(0.555)	(0.164)
SIZE	0.035*	0.015**	0.036*	0.015**
	(0.019)	(0.006)	(0.019)	(0.006)
ИТВ	0.015**	0.006**	0.014*	0.005**
	(0.007)	(0.002)	(0.007)	(0.002)
LEV	0.040	0.010	0.040	0.010
	(0.025)	(0.008)	(0.025)	(0.008)
<i>ROAt+1</i>	-1.897***	-0.735***	-1.879***	-0.743***
	(0.345)	(0.099)	(0.344)	(0.098)
SIGMA	-2.555**	-0.075	-2.371*	-0.005
	(1.289)	(0.375)	(1.282)	(0.365)
W_RET	0.240***	0.082***	0.235***	0.080***
	(0.029)	(0.009)	(0.029)	(0.009)
EARN_VOL	0.959	0.395**	0.948	0.397**
	(0.635)	(0.190)	(0.629)	(0.187)
SD_CASH_FLOW	-0.391	-0.162	-0.384	-0.161
	(0.725)	(0.225)	(0.725)	(0.223)
SD_SALES_VOL	0.175	0.065	0.171	0.060
	(0.156)	(0.050)	(0.156)	(0.049)
ННІ	0.999	0.270	1.063	0.297
	(0.686)	(0.204)	(0.688)	(0.204)
D_TURNOVER	0.071	0.021	0.070	0.020
	(0.045)	(0.013)	(0.044)	(0.013)
BETA	0.138*	0.048*	0.139*	0.047**
	(0.075)	(0.025)	(0.074)	(0.024)
FILE_SIZE	-0.029	-0.014	-0.033	-0.015
	(0.049)	(0.015)	(0.049)	(0.013)
ANALYST	0.010	-0.004	0.011	-0.004
	(0.033)	(0.010)	(0.033)	(0.010)
NCSKEW	0.000***	(0.010)	0.000	(0.010)
	(0.025)		(0.026)	
DUVOL	(0.025)	0 122***	(0.020)	0 105***
		(0.024)		(0.024)
7	6614	(0.024)	6614	(0.024)
/ t of instruments	0014	0014	0014	0014
of instruments	33	33	54	54 1
lags of den var as GMM instr		.,	1	1

Marginal effect plot/ H3

Conclusion

- Presence of conservatism in risk disclosure tone
- Risk tone conservatism decreases future stock price crashes
- Significant association within a specific range of accounting conservatism complements
- Contribution
 - Better information environment for users
 - Accounting standard setters attempting to increase disclosure requirements, 'hard' and 'soft' information as one package
 - Managerial implications
 - To achieve market stability

Thanks

Thanks for your attention!

Nijat Hajikhanov