..
Suche
Hinweise zum Einsatz der Google Suche
Personensuchezur unisono Personensuche
Veranstaltungssuchezur unisono Veranstaltungssuche
Katalog plus

Publikationen

Preprints

Artikel in Zeitschriften

  • M. Hovemann, A. Kopsch, T. Raasch und D. Vogel, B-spline quarklets and biorthogonal multiwavelets, Int. J. Wavelets Multiresolut. Inf. Process. 22(1), 2024, Article ID 2350029, DOI 10.1142/S0219691323500297
  • T. Kaiser, T. Raasch, J.J.C. Remmers und M.G.D. Geers, A wavelet-enhanced adaptive hierarchical FFT-based approach for the efficient solution of microscale boundary value problems, Comput. Methods Appl. Mech. Engrg. 409, 2023, Article ID 115959, DOI 10.1016/j.cma.2023.115959
  • F. Mefo Kue, T. Raasch und A. Zemkoho, A semismooth Newton-type method for bilevel programs with linear lower level problem and application to toll optimization, Pure Appl. Funct. Anal. 8, 1437-1463, 2023
  • A. Czaplinski, T. Raasch und J. Steinberg, Real eigenstructure of regular simplex tensors, Adv. Appl. Math. 148, Article ID 102521, 2023, DOI 10.1016/j.aam.2023.102521
  • S. Dahlke, U. Friedrich, P. Keding, T. Raasch und A. Sieber, Adaptive quarkonial domain decomposition methods for elliptic partial differential equations, IMA J. Numer. Anal. 41(4), 2021, 2608-2638, DOI 10.1093/imanum/draa030
  • S. Dahlke, T. Raasch und A. Sieber, Exponential convergence of adaptive quarklet approximation, J. Complexity 59, ID 101470, 2020, DOI 10.1016/j.jco.2020.101470
  • S. Dahlke, P. Keding und T. Raasch, Quarkonial frames with compression properties, Calcolo 54(3), 2017, 1-33, DOI 10.1007/s10092-016-0210-3
  • S. Qi, H. Behringer, T. Raasch und F. Schmid, A hybrid particle-continuum resolution method and its application in a homopolymer solution, The European Physical Journal Special Topics, 2016, 1-13, DOI 10.1140/epjst/e2016-60096-8
  • P. Cioica, S. Dahlke, N. Döhring, U. Friedrich, S. Kinzel, F. Lindner, T. Raasch, K. Ritter und R. L. Schilling, On the convergence analysis of the inexact linearly implicit Euler scheme for a class of SPDEs, Potential Anal., 2016 (online erschienen), DOI 10.1007/s11118-015-9510-5
  • E. Hans und T. Raasch, Global convergence of damped semismooth Newton methods for l1 Tikhonov regularization, Inverse Problems 31(2), 025005, 2015, DOI 10.1088/0266-5611/31/2/025005
  • S. Dahlke, M. Fornasier, U. Friedrich und T. Raasch, Multilevel preconditioning for sparse optimization of functionals with nonconvex fidelity terms, online erschienen bei J. Inv. Ill-Posed Pr., 2014, DOI 10.1515/jiip-2014-0031
  • P. Cioica, S. Dahlke, N. Döhring, U. Friedrich, S. Kinzel, F. Lindner, T. Raasch, K. Ritter und R.L. Schilling, Convergence analysis of spatially adaptive Rothe methods, Found. Comp. Math. 14(5), 2014, 863-912, DOI 10.1007/s10208-013-9183-7
  • R. Griesmaier, M. Hanke und T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform II, SIAM J. Sci. Comput. 35(5), 2013, A2188-A2206 (19 pages), DOI 10.1137/130908658
  • S. Dahlke, P. Oswald und T. Raasch, A Note on Quarkonial Systems and Multilevel Partition of Unity Methods, Math. Nachr. 286(5-6), 2013, 600-613, DOI 10.1002/mana.201100246
  • S. Dahlke, U. Friedrich, P. Maass, T. Raasch und R.A. Ressel, An adaptive wavelet solver for a nonlinear parameter identification problem for a parabolic differential equation with sparsity constraints, J. Inv. Ill-Posed Pr. 20(2), 2012, 213-251, DOI 10.1515/jip-2012-0013
  • P.A. Cioica, S. Dahlke, N. Döhring, S. Kinzel, F. Lindner, T. Raasch, K. Ritter und R. L. Schilling, Adaptive wavelet methods for the stochastic Poisson equation, BIT Numer. Math. 52(3), 589-614, 2012, DOI 10.1007/s10543-011-0368-7
  • S. Schlitt, T. Gorelik, A. Stewart, E. Schömer, T. Raasch und U. Kolb, Application of clustering techniques to electron diffraction data: unit cell parameter determination, Acta Cryst. 68(5), 536-546, 2012, DOI 10.1107/S0108767312026438
  • R. Griesmaier, M. Hanke und T. Raasch, Inverse source problems for the Helmholtz equation and the windowed Fourier transform, SIAM J. Sci. Comput. 34(3), A1544-1562, 2012, DOI 10.1137/110855880
  • S. Dahlke, M. Fornasier und T. Raasch, Multilevel Preconditioning and Adaptive Sparse Solution of Inverse Problems, Math. Comp. 81(277), 419-446, 2012, DOI 10.1090/S0025-5718-2011-02507-X
  • P.A. Cioica, S. Dahlke, S. Kinzel, F. Lindner, T. Raasch, K. Ritter und R. L. Schilling, Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains, Studia Math. 207(3), 197-234, 2011, DOI 10.4064/sm207-3-1
  • T. Bonesky, S. Dahlke, P. Maass und T. Raasch, Adaptive Wavelet Methods and Sparsity Reconstruction for Inverse Heat Conduction Problems, Adv. Comput. Math. 33(4), 385-411, 2010, DOI 10.1007/s10444-010-9147-2
  • S. Dahlke, M. Fornasier, M. Primbs, T. Raasch und M. Werner, Nonlinear and Adaptive Frame Approximation Schemes for Elliptic PDEs: Theory and Numerical Experiments, Numer. Methods Partial Differ. Equations 25(6), 1366-1401, 2009, DOI 10.1002/num.20407
  • S. Dahlke, M. Fornasier, T. Raasch, R. Stevenson und M. Werner, Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach, IMA J. Numer. Anal. 27(4), 717-740 (2007), DOI 10.1093/imanum/drl035
  • S. Dahlke, M. Fornasier und T. Raasch, Adaptive Frame Methods for Elliptic Operator Equations, Adv. Comput. Math. 27(1), 27-63, 2007, DOI 10.1007/s10444-005-7501-6

Buchbeiträge

Artikel in Tagungsbänden

  • A. Disterhoft, T. Raasch und F. Schmid, Numerical reduction of self-consistent field models of macromolecular systems, Proc. Appl. Math. Mech. 16 (2016), 915–916, DOI 10.1002/pamm.201610446
  • T. Raasch, Convergence Rates of l1-constrained Tikhonov Regularization under Compressibility Assumptions, SampTA 2011 Conference Proceedings
  • T. Raasch, Sparse Reconstructions for Inverse PDE Problems, Structured Decompositions and Efficient Algorithms (Dagstuhl, Germany) (S. Dahlke, I. Daubechies, M. Elad, G. Kutyniok, and G. Teschke, eds.), Dagstuhl Seminar Proceedings, no. 08492, Schloss Dagstuhl, Germany, 2009
  • S. Dahlke, M. Fornasier und T. Raasch, Adaptive Frame Algorithms for Elliptic Operator Equations, PAMM 5(1), 2005, 763-764 (Sonderband GAMM Annual Meeting 2005 - Luxembourg), DOI 10.1002/pamm.200510356

Sonstige Arbeiten

  • T. Raasch, Adaptive Wavelet and Frame Schemes for Elliptic and Parabolic Equations, Dissertation, Philipps-Universität Marburg, 2007, DOI 10.17192/z2007.0343 (Logos Verlag Berlin, ISBN 978-3-8325-1582-9)
  • T. Raasch, Über ein Wavelet-Galerkin-Verfahren für elliptische Randwertprobleme, Diplomarbeit, Universität Siegen, 2001