..
Suche

Personensuche
Veranstaltungssuche
Katalog der UB Siegen
/ fb6 / geomathe / theses /
 

Theses Supervised by Volker Michel

 

 

  Theses Supervised by Volker Michel

PhD Theses

  • Finished Theses
  1. N. Akhtar: A Multiscale Harmonic Spline Interpolation Method for the Inverse Spheroidal Gravimetric Problem, submitted and accepted 2009, second referee: Prof. Dr.-Ing.habil. Dr.tech.h.c.mult. Dr.-Ing.E.h.mult. Erik W. Grafarend (Stuttgart). The thesis is published at Shaker Verlag, Aachen.
  2. M. Akram: Constructive Approximation on the 3-dimensional Ball with Focus on Locally Supported Kernels and the Helmholtz Decomposition, submitted and accepted 2008, second referee: Prof. Dr. Michael Schreiner (Buchs, CH). The thesis is published at Shaker Verlag, Aachen.
  3. A. Amirbekyan: The Application of Reproducing Kernel Based Spline Approximation to Seismic Surface and Body Wave Tomography: Theoretical Aspects and Numerical Results, submitted 2006, accepted 2007, second referee: Prof. Frederik J. Simons, PhD (Princeton, USA). The thesis is published on-line at http://kluedo.ub.uni-kl.de/volltexte/2007/2103/
  4. P. Berkel: Multiscale Methods for the Combined Inversion of Normal Mode and Gravity Variations, submitted and accepted 2009, second referee: Prof. A.S. Fokas, PhD, MD (Cambridge, UK). The thesis is published at Shaker Verlag, Aachen.
  5. D. Fischer: Sparse Regularization of a Joint Inversion of Gravitational Data and Normal Mode Anomalies, submitted and accepted 2011, second referee: Prof. Frederik J. Simons, PhD (Princeton, USA). The thesis is published at Verlag Dr. Hut, München and on-line at http://dokumentix.ub.uni-siegen.de/opus/volltexte/2012/544/index.html.
  6. D. Michel: Framelet Based Multiscale Operator Decomposition, submitted and accepted 2006, second referee: Prof. Dr. Peter Maaß (Bremen). The thesis is published at Shaker Verlag, Aachen.
  7. R. Telschow: An Orthogonal Matching Pursuit for the Regularization of Spherical Inverse Problems, submitted and accepted 2014, second referee: Prof. Dr. Jürgen Prestin (Lübeck).
 

Diploma/Master Theses

  • Finished Theses
  1. N. Bachmann: The Mathematics Behind Tsunamis.
  2. D. Fischer: A Numerical Study of the Approximation Quality and Speed of Certain Strongly Localizing Kernels on the 3D-Ball.
  3. S. Homberger: Numerische Lösung einer Fredholm'schen Integralgleichung 1. Art mittels RFMP und ROFMP.
  4. A. Horbach: Analysis of Cosmic Microwave Background Observed by WMAP. 
  5. T. Iordanov: The Localization Behaviour of Spherical Scaling Functions and Wavelets - Studied at the Example of Gravity Field Analysis.
  6. K. Jonas: Grundlagen eines regularisierten Newton–One–Step–Verfahrens für die funktionelle Elektrische Impedanztomographie.
  7. P. Kammann: Modelling Seismic Wave Propagation Using Time–Dependent Cauchy–Navier Splines.
  8. A. Kohlhaas: Multiscale Modelling of Temporal and Spatial Variations in the Earth’s Gravity Potential Observed by GRACE.
  9. B. Kretz: Study on Parameter Choice Methods for the RFMP With Respect to Downward Continuation.
  10. B. Lappé: Multiresolutionsanalyse zeitvariierender Flächen mit Anwendung in der Herzanatomie.
  11. S. Maßmann: Spatiotemporal Multiscale Analysis of Sea Level Variations.
  12. S. Mertes: Die Bernstein-Skalierungsfunktion und das Bernstein-Wavelet im linearen und bilinearen Fall.
  13. U. Niederle: Synthetische Seismogramme im SNREI-Erdmodell. 
  14. L. Osman: Wavelets on the Unit Sphere and the Unit Ball in Rn. 
  15. I. Ostermann: Optimally Localizing Approximate Identities on the Three-dimensional Ball: Theory, Construction and Numerical Experiments.
  16. F. Schmidt: Detektion von Phasensprüngen (cycle slips) bei GPS-Trägerphasenmessungen mittels waveletbasierter Verfahren.
  17. M. Schmidt: Regionale sphärische Spline-Approximation des Gravitationsfeldes.
  18. N. Schneider: Vectorial Slepian Functions on the Ball.
  19. K. Seibert: Investigation of Mass Transports at the Earth's Surface and Filtering Techniques for GRACE Gravity Field Data Using the Example of Greenland. 
  20. A. Simon: Wavelet-based Adaptive Multiresolution Tools Applied to Speech Recognition.
  21. K. Wolf: Numerical Aspects of Harmonic Spline-Wavelets for the Satellite Gravimetry Problem.

 

Bachelor Theses

  • Finished Theses
    1. M. Kontak: Indikatoren für die Gleichmäßigkeit gitterbasierter Daten - Entwicklung und Vergleich von Methoden zur Bewertung von Vliesstoffen

 

PhD Admission Theses

  • Finished Theses
  1. N. Akhtar: The Numerical Calculation of the Surface Divergence via Product Kernels, 2006.
  2. M. Akram: Multiresolution Analysis of the Martian Topography, 2005.