Interconnected Automation Systems (IAS)
At the Chair of Interconnected Automation Systems (IAS) at the University of Siegen, we drive basic and applied research on design automation of software and hardware to improve the reliability, efficiency and sustainability of modern cyber-physical infrastructures - from industrial and mechatronic systems to energy conversion applications and electrical power systems.
Mission statement
We conduct rigorous, open and responsible research on interconnected automation systems and translate sound modeling, control and data-driven methods into trustworthy technologies that increase safety and reliability, reduce energy plus resource consumption and strengthen resilient infrastructures for the benefit of society. In teaching, we qualify engineers and researchers to combine a physical-analytical understanding of systems with computer-aided and data-oriented tools so that they can actively shape future generations of automation and energy systems.
Chair's head
Research profile
We research networked cyber-physical systems in industrial automation and mechatronics as well as in electrified energy technologies. Central fields of application are electric drives, power electronic converters, energy storage systems and charging infrastructures as well as networked electrical energy systems such as microgrids - with the aim of enabling more reliable, efficient and resilient operation under real operating conditions.
Our work covers the entire innovation chain from basic research to industrial transfer. A particular focus is on translating theoretical concepts into practical proof-of-concepts, supported by rapid software and hardware prototyping. Experimental validation, including targeted measurement campaigns on relevant test benches, is an integral part of our research process.
Open science is a cornerstone of our research practice. We publish open source software, reproducible workflows and other open resources to enable transparent evaluation, benchmarking and rapid knowledge transfer for students, researchers and industry partners. Our open source contributions can be found on GitHub: https://github.com/IAS-Uni-Siegen
Focus areas
- Optimal control methods (e.g., reinforcement learning, differential predictive control)
- Hardware design, optimization and testing of power electronic converters (component and system level)
- Hybrid modeling and system identification (combination of expert and data knowledge)
- Condition monitoring, diagnostics and digital twins (e.g. using fault and anomaly detection)
- State and parameter estimation (observer, co-estimator)
- Software-driven automation (reproducible design toolchains, verification and benchmarking)
Latest publications
Multicriteria decision-making methodologies and their applications in sustainable energy system/microgrids
Multicriteria decision-making methodologies and their applications in sustainable energy system/microgrids
Accurate Torque Estimation for Induction Motors by Utilizing Globally Optimized Flux Observers
Accurate Torque Estimation for Induction Motors by Utilizing Globally Optimized Flux Observers
Emulation of Microgrids for Research and Validation of Control and Operation Strategies
Emulation of Microgrids for Research and Validation of Control and Operation Strategies
Toward a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control
Toward a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control
List of contributors
List of contributors
Data Set Description: Identifying the Physics Behind an Electric Motor – Data-Driven Learning of the Electrical Behavior (Part I)
Data Set Description: Identifying the Physics Behind an Electric Motor – Data-Driven Learning of the Electrical Behavior (Part I)
Data-Driven Permanent Magnet Temperature Estimation in Synchronous Motors with Supervised Machine Learning
Data-Driven Permanent Magnet Temperature Estimation in Synchronous Motors with Supervised Machine Learning
OMG: A Scalable and Flexible Simulation and Testing Environment Toolbox for Intelligent Microgrid Control
OMG: A Scalable and Flexible Simulation and Testing Environment Toolbox for Intelligent Microgrid Control
A robust and sustainable microgrid to resist energy disruption during a pandemic
A robust and sustainable microgrid to resist energy disruption during a pandemic
Comparison of Gray-Box and Black-Box Two-Level Three-Phase Inverter Models for Electrical Drives
Comparison of Gray-Box and Black-Box Two-Level Three-Phase Inverter Models for Electrical Drives
Estimating Electric Motor Temperatures with Deep Residual Machine Learning
Estimating Electric Motor Temperatures with Deep Residual Machine Learning
Towards a Scalable and Flexible Simulation and Testing Environment Toolbox for Intelligent Microgrid Control
Towards a Scalable and Flexible Simulation and Testing Environment Toolbox for Intelligent Microgrid Control
Pagination
- First page
- Previous page
- …
- 11
- 12
- 13
- …
- Next page
- Last page
Opening hours secretariat
Opening hours
Postal address
University of Siegen
Chair of Interconnected Automation Systems (IAS)
Hölderlinstraße 3
57076 Siegen
Visitor address
University of Siegen
Chair of Interconnected Automation Systems (IAS)
H-A Level 4
Room: H-A 4106/3
Hölderlinstraße 3
57076 Siegen
Secretariat
Secretary: Lada Lübke
Phone: +49 (0)271 / 740-3305
Fax: +49 (0)271 / 740-13305
Room: H-A 4106/3
E-Mail: IAS-office@eti.uni-siegen.de